Chapter 2 Relations And Functions EXERCISE 2.3
EXERCISE 2.3
1. Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
(iii) $\{(1,3),(1,5),(2,5)\}$.
Show Answer
Answer :
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
Since $2,5,8,11,14$, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.
Here, domain $=\{2,5,8,11,14,17\}$ and range $=\{1\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
Since $2,4,6,8,10,12$, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.
Here, domain $=\{2,4,6,8,10,12,14\}$ and range $=\{1,2,3,4,5,6,7\}$
(iii) $\{(1,3),(1,5),(2,5)\}$
Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.
2. Find the domain and range of the following real functions:
(i) $f(x)=-|x|$
(ii) $f(x)=\sqrt{9-x^{2}}$.
Show Answer
Answer :
(i) $f(x)=-|x|, x \in R$
We know that $|x|=\begin{cases} x, x \geq 0 \\ -x, x<0 \end{cases} .$
$\therefore f(x)=-|x|=\begin{cases} -x, x \geq 0 \\ x, x<0 \end{cases} .$
Since $f(x)$ is defined for $x \in \mathbf{R}$, the domain of fis $\mathbf{R}$.
It can be observed that the range of $f(x)=-|x|$ is all real numbers except positive real numbers.
$\therefore$ The range of fis $(- \infty, 0]$.
(ii) $f(x)=\sqrt{9-x^{2}}$
Since $\sqrt{9-x^{2}}$ is defined for all real numbers that are greater than or equal to 3 and less than or equal to 3 , the domain of $f(x)$ is $\{x$ : -3 $ x \leq 3\}$ or [- 3,3$]$.
For any value of $x$ such that $-3 \leq x \leq 3$, the value of $f(x)$ will lie between 0 and 3 .
$\therefore$ The range of $f(x)$ is $\{x: 0 \leq x \leq 3\}$ or $[0,3]$.
3. A function $f$ is defined by $f(x)=2 x-5$. Write down the values of
(i) $f(0)$,
(ii) $f(7)$,
(iii) $f(-3)$.
Show Answer
Answer :
The given function is $f(x)=2 x-5$.
Therefore,
(i) $f(0)=2 \times 0-5=0-5=-5$
(ii) $f(7)=2 \times 7-5=14-5=9$
(iii) $f(-3)=2 \times(-3)-5=-6-5=-11$
4. The function ’ $t$ ’ which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C)=\dfrac{9 C}{5}+32$.
Find (i) $t(0)$
(ii) $t(28)$
(iii) $t(-10)$
(iv) The value of $C$, when $t(C)=212$.
Show Answer
Answer :
The given function is
$ t(C)=\dfrac{9 C}{5}+32 $
Therefore,
(i)
$ \begin{aligned} & t(0)=\dfrac{9 \times 0}{5}+32=0+32=32 \\ & t(28)=\dfrac{9 \times 28}{5}+32=\dfrac{252+160}{5}=\dfrac{412}{5} \end{aligned} $
(ii)
(iii)
$ t(-10)=\dfrac{9 \times(-10)}{5}+32=9 \times(-2)+32=-18+32=14 $
(iv) It is given that $t(C)=212$
$\therefore 212=\dfrac{9 C}{5}+32$
$\Rightarrow \dfrac{9 C}{5}=212-32$
$\Rightarrow \dfrac{9 C}{5}=180$
$\Rightarrow 9 C=180 \times 5$
$\Rightarrow C=\dfrac{180 \times 5}{9}=100$
Thus, the value of $t$, when $t(C)=212$, is 100 .
5. Find the range of each of the following functions.
(i) $f(x)=2-3 x, x \in \mathbf{R}, x>0$.
(ii) $f(x)=x^{2}+2, x$ is a real number.
(iii) $f(x)=x, x$ is a real number.
Show Answer
Answer :
(i) $f(x)=2 - 3 x, x \in \mathbf{R}, x>0$
The values of $f(x)$ for various values of real numbers $x>0$ can be written in the tabular form as
$x$ | 0.01 | 0.1 | 0.9 | 1 | 2 | 2.5 | 4 | 5 | … |
---|---|---|---|---|---|---|---|---|---|
$f(x)$ | 1.97 | 1.7 | -0.7 | -1 | -4 | -5.5 | -‘10 | -13 | . |
Thus, it can be clearly observed that the range of fis the set of all real numbers less than 2.
i.e., range of $f=(- \infty, 2)$
Alter:
Let $x>0$
$\Rightarrow 3 x>0$
$\Rightarrow 2 - 3 x<2$
$\Rightarrow f(x)<2$
$\therefore$ Range of $f=(- \infty, 2)$
(ii) $f(x)=x^{2}+2, x$, is a real number
The values of $f(x)$ for various values of real numbers $x$ can be written in the tabular form as
$x$ | 0 | $\pm 0.3$ | $\pm 0.8$ | $\pm 1$ | $\pm 2$ | $\pm 3$ | $\ldots$ |
---|---|---|---|---|---|---|---|
$f(x)$ | 2 | 2.09 | 2.64 | 3 | 6 | 11 | $\ldots \ldots$ |
Thus, it can be clearly observed that the range of fis the set of all real numbers greater than 2 .
i.e., range of $f=[2, \infty)$
Alter:
Let $x$ be any real number.
Accordingly,
$x^{2} \geq 0$
$\Rightarrow x^{2}+2 \geq 0+2$
$\Rightarrow x^{2}+2 \geq 2$
$\Rightarrow f(x) \geq 2$
$\therefore$ Range of $f=[2, \infty)$
(iii) $f(x)=x, x$ is a real number
It is clear that the range of fis the set of all real numbers.
$\therefore$ Range of $f=\mathbf{R}$