Chapter 2 Relations And Functions EXERCISE 2.3

EXERCISE 2.3

1. Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$

(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$

(iii) $\{(1,3),(1,5),(2,5)\}$.

Show Answer

Answer :

(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$

Since $2,5,8,11,14$, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain $=\{2,5,8,11,14,17\}$ and range $=\{1\}$

(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$

Since $2,4,6,8,10,12$, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain $=\{2,4,6,8,10,12,14\}$ and range $=\{1,2,3,4,5,6,7\}$

(iii) $\{(1,3),(1,5),(2,5)\}$

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

2. Find the domain and range of the following real functions:

(i) $f(x)=-|x|$

(ii) $f(x)=\sqrt{9-x^{2}}$.

Show Answer

Answer :

(i) $f(x)=-|x|, x \in R$

We know that $|x|=\begin{cases} x, x \geq 0 \\ -x, x<0 \end{cases} .$

$\therefore f(x)=-|x|=\begin{cases} -x, x \geq 0 \\ x, x<0 \end{cases} .$

Since $f(x)$ is defined for $x \in \mathbf{R}$, the domain of fis $\mathbf{R}$.

It can be observed that the range of $f(x)=-|x|$ is all real numbers except positive real numbers.

$\therefore$ The range of fis $(- \infty, 0]$.

(ii) $f(x)=\sqrt{9-x^{2}}$

Since $\sqrt{9-x^{2}}$ is defined for all real numbers that are greater than or equal to 3 and less than or equal to 3 , the domain of $f(x)$ is $\{x$ : -3 $ x \leq 3\}$ or [- 3,3$]$.

For any value of $x$ such that $-3 \leq x \leq 3$, the value of $f(x)$ will lie between 0 and 3 .

$\therefore$ The range of $f(x)$ is $\{x: 0 \leq x \leq 3\}$ or $[0,3]$.

3. A function $f$ is defined by $f(x)=2 x-5$. Write down the values of

(i) $f(0)$,

(ii) $f(7)$,

(iii) $f(-3)$.

Show Answer

Answer :

The given function is $f(x)=2 x-5$.

Therefore,

(i) $f(0)=2 \times 0-5=0-5=-5$

(ii) $f(7)=2 \times 7-5=14-5=9$

(iii) $f(-3)=2 \times(-3)-5=-6-5=-11$

4. The function ’ $t$ ’ which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C)=\dfrac{9 C}{5}+32$.

Find (i) $t(0)$

(ii) $t(28)$

(iii) $t(-10)$

(iv) The value of $C$, when $t(C)=212$.

Show Answer

Answer :

The given function is

$ t(C)=\dfrac{9 C}{5}+32 $

Therefore,

(i)

$ \begin{aligned} & t(0)=\dfrac{9 \times 0}{5}+32=0+32=32 \\ & t(28)=\dfrac{9 \times 28}{5}+32=\dfrac{252+160}{5}=\dfrac{412}{5} \end{aligned} $

(ii)

(iii)

$ t(-10)=\dfrac{9 \times(-10)}{5}+32=9 \times(-2)+32=-18+32=14 $

(iv) It is given that $t(C)=212$

$\therefore 212=\dfrac{9 C}{5}+32$

$\Rightarrow \dfrac{9 C}{5}=212-32$

$\Rightarrow \dfrac{9 C}{5}=180$

$\Rightarrow 9 C=180 \times 5$

$\Rightarrow C=\dfrac{180 \times 5}{9}=100$

Thus, the value of $t$, when $t(C)=212$, is 100 .

5. Find the range of each of the following functions.

(i) $f(x)=2-3 x, x \in \mathbf{R}, x>0$.

(ii) $f(x)=x^{2}+2, x$ is a real number.

(iii) $f(x)=x, x$ is a real number.

Show Answer

Answer :

(i) $f(x)=2 - 3 x, x \in \mathbf{R}, x>0$

The values of $f(x)$ for various values of real numbers $x>0$ can be written in the tabular form as

$x$ 0.01 0.1 0.9 1 2 2.5 4 5
$f(x)$ 1.97 1.7 -0.7 -1 -4 -5.5 -‘10 -13 .

Thus, it can be clearly observed that the range of fis the set of all real numbers less than 2.

i.e., range of $f=(- \infty, 2)$

Alter:

Let $x>0$

$\Rightarrow 3 x>0$

$\Rightarrow 2 - 3 x<2$

$\Rightarrow f(x)<2$

$\therefore$ Range of $f=(- \infty, 2)$

(ii) $f(x)=x^{2}+2, x$, is a real number

The values of $f(x)$ for various values of real numbers $x$ can be written in the tabular form as

$x$ 0 $\pm 0.3$ $\pm 0.8$ $\pm 1$ $\pm 2$ $\pm 3$ $\ldots$
$f(x)$ 2 2.09 2.64 3 6 11 $\ldots \ldots$

Thus, it can be clearly observed that the range of fis the set of all real numbers greater than 2 .

i.e., range of $f=[2, \infty)$

Alter:

Let $x$ be any real number.

Accordingly,

$x^{2} \geq 0$

$\Rightarrow x^{2}+2 \geq 0+2$

$\Rightarrow x^{2}+2 \geq 2$

$\Rightarrow f(x) \geq 2$

$\therefore$ Range of $f=[2, \infty)$

(iii) $f(x)=x, x$ is a real number

It is clear that the range of fis the set of all real numbers.

$\therefore$ Range of $f=\mathbf{R}$



Table of Contents