Chapter 13 Statistics Miscellaneous Exercise
Miscellaneous Exercise On Chapter 13
1. The mean and variance of eight observations are 9 and 9.25 , respectively. If six of the observations are $6,7,10,12,12$ and 13 , find the remaining two observations.
Show Answer
Answer :
Let the remaining two observations be $x$ and $y$.
Therefore, the observations are $6,7,10,12,12,13, x, y$.
Mean, $\bar{{}x}=\dfrac{6+7+10+12+12+13+x+y}{8}=9$
$\Rightarrow 60+x+y=72$
$\Rightarrow x+y=12$
Variance $=9.25=\dfrac{1}{n} \sum _{i=1}^{8}(x_i-\bar{{}x})^{2}$
$9.25=\dfrac{1}{8}[(-3)^{2}+(-2)^{2}+(1)^{2}+(3)^{2}+(3)^{2}+(4)^{2}+x^{2}+y^{2}-2 \times 9(x+y)+2 \times(9)^{2}]$
$9.25=\dfrac{1}{8}[9+4+1+9+9+16+x^{2}+y^{2}-18(12)+162]$
[Using (1)]
$9.25=\dfrac{1}{8}[48+x^{2}+y^{2}-216+162]$
$9.25=\dfrac{1}{8}[x^{2}+y^{2}-6]$
$\Rightarrow x^{2}+y^{2}=80$
From (1), we obtain
$x^{2}+y^{2}+2 x y=144 -(3)$
From (2) and (3), we obtain
$2 x y=64-(4)$
Subtracting (4) from (2), we obtain
$x^{2}+y^{2} - 2 x y=80-64=16$
$\Rightarrow x- y=-(5)$
Therefore, from (1) and (5), we obtain
$x=8$ and $y=4$, when $x$ - $y=4$
$x=4$ and $y=8$, when $x$ - $y=a- 4$
Thus, the remaining observations are 4 and 8 .
2. The mean and variance of 7 observations are 8 and 16 , respectively. If five of the observations are 2, 4, 10, 12, 14. Find the remaining two observations.
Show Answer
Answer :
Let the remaining two observations be $x$ and $y$.
The observations are 2, 4, 10, 12, 14, $x, y$.
Mean, $\bar{{}x}=\dfrac{2+4+10+12+14+x+y}{7}=8$
$\Rightarrow 56=42+x+y$
$\Rightarrow x+y=14$
Variance $=16=\dfrac{1}{n} \sum _{i=1}^{7}(x_i-\bar{{}x})^{2}$
$16=\dfrac{1}{7}[(-6)^{2}+(-4)^{2}+(2)^{2}+(4)^{2}+(6)^{2}+x^{2}+y^{2}-2 \times 8(x+y)+2 \times(8)^{2}]$
$16=\dfrac{1}{7}[36+16+4+16+36+x^{2}+y^{2}-16(14)+2(64)]$
…[Using (1)]
$16=\dfrac{1}{7}[108+x^{2}+y^{2}-224+128]$
$16=\dfrac{1}{7}[12+x^{2}+y^{2}]$
$\Rightarrow x^{2}+y^{2}=112-12=100$
$x^{2}+y^{2}=100$
From (1), we obtain
$x^{2}+y^{2}+2 x y=196 -(3)$
From (2) and (3), we obtain
$2 x y=196$ - 100
$\Rightarrow 2 x y=96 - (4)$
Subtracting (4) from (2), we obtain
$x^{2}+y^{2} - 2 x y=100$ - 96
$\Rightarrow(x - y)^{2}=4$
$\Rightarrow x - y=- (5)$
Therefore, from (1) and (5), we obtain
$x=8$ and $y=6$ when $x- y=2$
$x=6$ and $y=8$ when $x- y=- {2}$
Thus, the remaining observations are 6 and 8 .
3. The mean and standard deviation of six observations are 8 and 4 , respectively. If each observation is multiplied by 3 , find the new mean and new standard deviation of the resulting observations.
Show Answer
Answer :
Let the observations be $x_1, x_2, x_3, x_4, x_5$, and $x_6$.
It is given that mean is 8 and standard deviation is 4 .
Mean, $\bar{{}x}=\dfrac{x_1+x_2+x_3+x_4+x_5+x_6}{6}=8$
If each observation is multiplied by 3 and the resulting observations are $y_i$, then
$y_i=3 x _{\text{, i.e. }} x_i=\dfrac{1}{3} y_i$, for $i=1$ to 6
$\therefore$ New mean, $\bar{{}y}=\dfrac{y_1+y_2+y_3+y_4+y_5+y_6}{6}$
$$ \begin{aligned} & =\dfrac{3(x_1+x_2+x_3+x_4+x_5+x_6)}{6} \\ & =3 \times 8 \\ & =24 \end{aligned} $$
Standard deviation, $\sigma=\sqrt{\dfrac{1}{n} \sum _{i=1}^{6}(x_i-\bar{{}x})^{2}}$
$$ \begin{align*} \therefore & (4)^{2}=\dfrac{1}{6} \sum _{j=1}^{6}(x_j-\bar{{}x})^{2} \\ & \sum _{i=1}^{6}(x_i-\bar{{}x})^{2}=96 \tag{2} \end{align*} $$
From (1) and (2), it can be observed that,
$$ \begin{aligned} & \bar{{}y}=3 \bar{{}x} \\ & \bar{{}x}=\dfrac{1}{3} \bar{{}y} \end{aligned} $$
Substituting the values of $x_i$ and $\bar{x}^{-}$in (2), we obtain
$$ \begin{aligned} & \sum _{i=1}^{6}(\dfrac{1}{3} y_i-\dfrac{1}{3} \bar{{}y})^{2}=96 \\ & \Rightarrow \sum _{i=1}^{6}(y_i-\bar{{}y})^{2}=864 \end{aligned} $$
Therefore, variance of new observations $=(\dfrac{1}{6} \times 864)=144$
Hence, the standard deviation of new observations is $\sqrt{144}=12$
4. Given that $\bar{x}$ is the mean and $\sigma^{2}$ is the variance of $n$ observations $x_1, x_2, \ldots, x_n$. Prove that the mean and variance of the observations $a x_1, a x_2, a x_3, \ldots ., a x_n$ are $a \bar{x}$ and $a^{2} \sigma^{2}$, respectively, $(a \neq 0)$.
Show Answer
Answer :
The given $n$ observations are $x_1, x_2 - x_n$.
Mean $=\bar{{}x}$
Variance $= σ^{2}$
$\therefore \sigma^{2}=\dfrac{1}{n} \sum _{i=1}^{n} y_i(x_i-\bar{{}x})^{2}$
If each observation is multiplied by $a$ and the new observations are $y_i$, then
$ \begin{aligned} & y_i=a x_i \text{ i.e., } x_i=\dfrac{1}{a} y_i \\ & \therefore \bar{{}y}=\dfrac{1}{n} \sum _{i=1}^{n} y_j=\dfrac{1}{n} \sum _{i=1}^{n} a x_i=\dfrac{a}{n} \sum _{i=1}^{n} x_i=a \bar{{}x} \quad(\bar{{}x}=\dfrac{1}{n} \sum _{i=1}^{n} x_i) \end{aligned} $
Therefore, mean of the observations, $a x_1, a x_2 … a x_n$, is $a \bar{{}x}$.
Substituting the values of $x$ and $\bar{{}x}$ in (1), we obtain
$ \begin{aligned} & \sigma^{2}=\dfrac{1}{n} \sum _{i=1}^{n}(\dfrac{1}{a} y_i-\dfrac{1}{a} \bar{{}y})^{2} \\ & \Rightarrow a^{2} \sigma^{2}=\dfrac{1}{n} \sum _{i=1}^{n}(y_i-\bar{{}y})^{2} \end{aligned} $
Thus, the variance of the observations, $a x_1, a x_2 … ax_n$, is $a^{2} σ^{2}$.
5. The mean and standard deviation of 20 observations are found to be 10 and 2 , respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted.
(ii) If it is replaced by 12 .
Show Answer
Answer :
(i) Number of observations $(n)=20$
Incorrect mean $=10$
Incorrect standard deviation $=2$
$\bar{{}x}=\dfrac{1}{n} \sum _{i=1}^{20} x_i$
$10=\dfrac{1}{20} \sum _{i=1}^{20} x_i$
$\Rightarrow \sum _{i=1}^{20} x_i=200$
That is, incorrect sum of observations $=200$
Correct sum of observations $=200$ - 8 = 192
$\therefore$ Correct mean $=\dfrac{\text{ Correct sum }}{19}=\dfrac{192}{19}=10.1$
Standard deviation $\sigma=\sqrt{\dfrac{1}{n} \sum _{i=1}^{n} x_i^{2}-\dfrac{1}{n^{2}}(\sum _{i=1}^{n} x_i)^{2}}=\sqrt{\dfrac{1}{n} \sum _{i=1}^{n} x_i^{2}-(\bar{{}x})^{2}}$
$\Rightarrow 2=\sqrt{\dfrac{1}{20} \text{ Incorrect } \sum _{i=1}^{n} x_i^{2}-(10)^{2}}$
$\Rightarrow 4=\dfrac{1}{20} Incorrect \sum _{i=1}^{n} x_i^{2}-100$
$\Rightarrow$ Incorrect $\sum _{i=1}^{n} x_i^{2}=2080$
$\therefore$ Correct $\sum _{j=1}^{n} x_i^{2}=Incorrect \sum _{i=1}^{n} x_i^{2}-(8)^{2}$
$ =2080-64 $
$ =2016 $
$\therefore$ Correct standard deviation $=\sqrt{\dfrac{\text{ Correct } \sum x_i^{2}}{n}-(\text{ Correct mean })^{2}}$
$ \begin{aligned} & =\sqrt{\dfrac{2016}{19}-(10.1)^{2}} \\ & =\sqrt{106.1-102.01} \\ & =\sqrt{4.09} \\ & =2.02 \end{aligned} $
(ii) When 8 is replaced by 12 ,
Incorrect sum of observations $=200$
$\therefore$ Correct sum of observations $=200$ - $8+12=204$ $\therefore$ Correct mean $=\dfrac{\text{ Correct sum }}{20}=\dfrac{204}{20}=10.2$
Standard deviation $\sigma=\sqrt{\dfrac{1}{n} \sum _{i=1}^{n} x_i{ }^{2}-\dfrac{1}{n^{2}}(\sum _{i=1}^{n} x_i)^{2}}=\sqrt{\dfrac{1}{n} \sum _{i=1}^{n} x_i{ }^{2}-(\bar{{}x})^{2}}$
$\Rightarrow 2=\sqrt{\dfrac{1}{20} \text{ Incorrect } \sum _{i=1}^{n} x_i^{2}-(10)^{2}}$
$\Rightarrow 4=\dfrac{1}{20}$ Incorrect $\sum _{i=1}^{n} x_i^{2}-100$
$\Rightarrow$ Incorrect $\sum _{i=1}^{n} x_i^{2}=2080$
$\therefore$ Correct $\sum _{i=1}^{n} x_i^{2}=$ Incorrect $\sum _{i=1}^{n} x_i^{2}-(8)^{2}+(12)^{2}$
$ \begin{aligned} & =2080-64+144 \\ & =2160 \end{aligned} $
$\therefore$ Correct standard deviation $=\sqrt{\dfrac{\text{ Correct } \sum x_i{ }^{2}}{n}-(\text{ Correct mean })^{2}}$
$ \begin{aligned} & =\sqrt{\dfrac{2160}{20}-(10.2)^{2}} \\ & =\sqrt{108-104.04} \\ & =\sqrt{3.96} \\ & =1.98 \end{aligned} $
6. The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21,21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.
Show Answer
Answer :
Number of observations $(n)=100$
Incorrect mean $(\bar{{}x})=20$
Incorrect standard deviation $(\sigma)=3$
$\Rightarrow 20=\dfrac{1}{100} \sum _{i=1}^{100} x_i$
$\Rightarrow \sum _{i=1}^{100} x_i=20 \times 100=2000$
$\therefore$ Incorrect sum of observations $=2000$
$\Rightarrow$ Correct sum of observations $=2000$ - 21 - 21 - $18=2000$ - $60=1940$ $\therefore$ Correct mean $=\dfrac{\text{ Correct sum }}{100-3}=\dfrac{1940}{97}=20$
Standard deviation $(\sigma)=\sqrt{\dfrac{1}{n} \sum _{i=1}^{n} x_i-\dfrac{1}{n^{2}}(\sum _{i=1}^{n} x_i)^{2}}=\sqrt{\dfrac{1}{n} \sum _{i=1}^{n} x_i^{2}-(\bar{{}x})^{2}}$
$\Rightarrow 3=\sqrt{\dfrac{1}{100} \times \text{ Incorrect } \sum x_i^{2}-(20)^{2}}$
$\Rightarrow$ Incorrect $\sum x_i^{2}=100(9+400)=40900$
Correct $\sum _{i=1}^{n} x_i^{2}=Incorrect \sum _{i=1}^{n} x_i^{2}-(21)^{2}-(21)^{2}-(18)^{2}$
$ =40900-441-441-324 $
$ =39694 $
$\therefore$ Correct standard deviation $=\sqrt{\dfrac{\text{ Correct } \sum x_j^{2}}{n}-(\text{ Correct mean })^{2}}$
$ \begin{aligned} & =\sqrt{\dfrac{39694}{97}-(20)^{2}} \\ & =\sqrt{409.216-400} \\ & =\sqrt{9.216} \\ & =3.036 \end{aligned} $