Chapter 13 Statistics EXERCISE 13.2

EXERCISE 13.2

Find the mean and variance for each of the data in Exercies 1 to 5.

1. $6,7,10,12,13,4,8,12$

Show Answer

Answer :

$6,7,10,12,13,4,8,12$

Mean, $\overline{x}=\dfrac{\sum _{i=1}^{8} x_i}{n}=\dfrac{6+7+10+12+13+4+8+12}{8}=\dfrac{72}{8}=9$

The following table is obtained.

$X_i$ $(x_i-\bar{{}x})$ $(x_i-\overline{x})^{2}$
6 $- $3 9
7 $- 2$ 4
10 $- 1$ 1
12 3 9
13 4 16
4 -5 25
8 $- $1 1
12 3 9
74

Variance $(\sigma^{2})=\dfrac{1}{n} \sum _{i=1}^{8}(x_i-\bar{{}x})^{2}=\dfrac{1}{8} \times 74=9.25$

2. First $n$ natural numbers

Show Answer

Answer :

The mean of first $n$ natural numbers is calculated as follows.

Mean $=\dfrac{\text{ Sum of all observations }}{\text{ Number of observations }}$ $\therefore$ Mean $=\dfrac{\dfrac{n(n+1)}{2}}{n}=\dfrac{n+1}{2}$

Variance $(\sigma^{2})=\dfrac{1}{n} \sum _{i=1}^{n}(x_i-\bar{{}x})^{2}$

$=\dfrac{1}{n} \sum _{i=1}^{n}[x_i-(\dfrac{n+1}{2})]^{2}$

$=\dfrac{1}{n} \sum _{i=1}^{n} x_i{ }^{2}-\dfrac{1}{n} \sum _{i=1}^{n} 2(\dfrac{n+1}{2}) x_i+\dfrac{1}{n} \sum _{i=1}^{n}(\dfrac{n+1}{2})^{2}$

$=\dfrac{1}{n} \dfrac{n(n+1)(2 n+1)}{6}-(\dfrac{n+1}{n})[\dfrac{n(n+1)}{2}]+\dfrac{(n+1)^{2}}{4 n} \times n$

$=\dfrac{(n+1)(2 n+1)}{6}-\dfrac{(n+1)^{2}}{2}+\dfrac{(n+1)^{2}}{4}$

$=\dfrac{(n+1)(2 n+1)}{6}-\dfrac{(n+1)^{2}}{4}$

$=(n+1)[\dfrac{4 n+2-3 n-3}{12}]$

$=\dfrac{(n+1)(n-1)}{12}$

$=\dfrac{n^{2}-1}{12}$

3. First 10 multiples of 3

Show Answer

Answer :

The first 10 multiples of 3 are

$3,6,9,12,15,18,21,24,27,30$

Here, number of observations, $n=10$

Mean, $\bar{{}x}=\dfrac{\sum _{i=1}^{10} x_i}{10}=\dfrac{165}{10}=16.5$

The following table is obtained.

$x_i$ $(x_i-\overline{x})$ $(x_i-\overline{x})^{2}$
3 $- 13.5$ 182.25
6 $- 10.5$ 110.25
9 $- $ 7.5 56.25
12 $- $ 4.5 20.25
15 $- $ 1.5 2.25
18 1.5 2.25
21 4.5 20.25
24 7.5 56.25
27 10.5 110.25
30 13.5 182.25
742.5

Variance $(\sigma^{2})=\dfrac{1}{n} \sum _{i=1}^{10}(x_i-\overline{x})^{2}=\dfrac{1}{10} \times 742.5=74.25$

4.

$x_i$ 6 10 14 18 24 28 30
$f_i$ 2 4 7 12 8 4 3
Show Answer

Answer :

The data is obtained in tabular form as follows.

$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f} \boldsymbol{{}i}$ $\boldsymbol{{}f} _{\boldsymbol{{}i}} \boldsymbol{{}x} _{\boldsymbol{{}i}}$ $x_i-\overline{x}$ $(x_i-\overline{x})^{2}$ $f_i(x_i-\overline{x})^{2}$
6 2 12 $- 13$ 169 338
10 4 40 $- 9$ 81 324
14 7 98 $- $5 25 175
18 12 216 - 1 1 12
24 8 192 5 25 200
28 4 112 9 81 324
30 3 90 11 121 363
40 760 1736

Here, $N=40, \quad \sum _{i=1}^{7} f_i x_i=760$

$\therefore \overline{x}=\dfrac{\sum _{i=1}^{7} f_i x_i}{N}=\dfrac{760}{40}=19$

Variance $=(\sigma^{2})=\dfrac{1}{N} \sum _{i=1}^{7} f_i(x_i-\bar{{}x})^{2}=\dfrac{1}{40} \times 1736=43.4$

5.

$x_i$ 92 93 97 98 102 104 109
$f_i$ 3 2 3 2 6 3 3
Show Answer

Answer :

The data is obtained in tabular form as follows.

$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f} \boldsymbol{{}i}$ $\boldsymbol{{}f} _{\boldsymbol{{}i}} \boldsymbol{{}x} _{\boldsymbol{{}i}}$ $x_i-\overline{x}$ $(x_i-\overline{x})^{2}$ $f_i(x_i-\overline{x})^{2}$
92 3 276 $- 8$ 64 192
93 2 186 $- 7$ 49 98
97 3 291 $- 3$ 9 27
98 2 196 $- 2$ 4 8
102 6 612 2 4 24
104 3 312 4 16 48
109 3 327 9 81 243
22 2200 640

Here, $N=22$

$ \sum _{i=1}^{7} f_i x_i=2200 $

$\therefore \overline{x}=\dfrac{1}{N} \sum _{i=1}^{7} f_i x_i=\dfrac{1}{22} \times 2200=100$

$Variance(\sigma^{2})=\dfrac{1}{N} \sum _{i=1}^{7} f_i(x_i-\bar{{}x})^{2}=\dfrac{1}{22} \times 640=29.09$

6. Find the mean and standard deviation using short-cut method.

$x_i$ 60 61 62 63 64 65 66 67 68
$f_i$ 2 1 12 29 25 12 10 4 5
Show Answer

Answer :

The data is obtained in tabular form as follows.

$\boldsymbol{{}X} _{\boldsymbol{{}i}}$ $f_i$ $f_i=\dfrac{x_i-64}{1}$ $y_i^{2}$ $f_i y_i$ $f_i y_i^{2}$
60 2 $ - 4$ 16 - 8 32
61 1 $ - 3$ 9 $- 3$ 9
62 12 $- 2$ 4 $- $ 24 48
63 29 $- 1$ 1 -29 29
64 25 0 0 0 0
65 12 1 1 12 12
66 10 2 4 20 40
67 4 3 9 12 36
68 5 4 16 20 80
100 220 0 286

$\overline{x}=A \dfrac{\sum _{i=1}^{9} f_i y_i}{N} \times h=64+\dfrac{0}{100} \times 1=64+0=64$

Variance, $\sigma^{2}=\dfrac{h^{2}}{N^{2}}[N \sum _{i=1}^{9} f_i y_i{ }^{2}-(\sum _{i=1}^{9} f_i y_i)^{2}]$

$ \begin{aligned} & =\dfrac{1}{100^{2}}[100 \times 286-0] \\ & =2.86 \end{aligned} $

$\therefore S \tan$ dard deviation $(\sigma)=\sqrt{2.86}=1.69$

Find the mean and variance for the following frequency distributions in Exercises 7 and 8.

Find the mean and variance for the following frequency distributions in Exercises 7 and 8.

7.

Classes $0-30$ $30-60$ $60-90$ $90-120$ $120-150$ $150-180$ $180-210$
Frequencies 2 3 5 10 3 5 2
Show Answer

Answer :

Class Frequency $f_i$ Mid-point $x_i$ $y_i=\dfrac{x_i-105}{30}$ $y_i^{2}$ $f y_i$ $f y_i^{2}$
$0-30$ 2 15 $- $‘3 9 -6 18
$30-60$ 3 45 $- 2$ 4 $- $ 6 12
$60-90$ 5 75 $- 1$ 1 $- 5$ 5
$90-120$ 10 105 0 0 0 0
$120-150$ 3 135 1 1 3 3
$150-180$ 5 165 2 4 10 20
$180-210$ 2 195 3 9 6 18
30 2 76

Mean,

$ \begin{aligned} Variance(\sigma^{2}) & =\dfrac{h^{2}}{N^{2}}[N \sum _{i=1}^{7} f_i y_i^{2}-(\sum _{i=1}^{7} f_i y_i)^{2}] \\ & =\dfrac{(30)^{2}}{(30)^{2}}[30 \times 76-(2)^{2}] \\ & =2280-4 \\ & =2276 \end{aligned} $

8.

Classes $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
Frequencies 5 8 15 16 6
Show Answer

Answer :

Class Frequency
$\boldsymbol{{}f}_i$
Mid-point $\boldsymbol{{}x}_i$ $y_i=\dfrac{x_i-25}{10}$ $\boldsymbol{{}y}_i^{2}$ $\boldsymbol{{}f y} _{i}$ $\boldsymbol{{}f y} _{\mathbf{i}}{ }^{2}$
$0-10$ 5 5 $- 2$ 4 $- 10$ 20
$10-20$ 8 15 $- 1$ 1 $- 8$ 8
$20-30$ 15 25 0 0 0 0
$30-40$ 16 35 1 1 16 16
$40-50$ 6 45 2 4 12 24
50 10 68

$\overline{x}=A+\dfrac{\sum _{i=1}^{5} f_i y_i}{N} \times h=25+\dfrac{10}{50} \times 10=25+2=27$ $Variance(\sigma^{2})=\dfrac{h^{2}}{N^{2}}[N \sum _{i=1}^{5} f_i y_i{ }^{2}-(\sum _{i=1}^{5} f_i y_i)^{2}]$

$ \begin{aligned} & =\dfrac{(10)^{2}}{(50)^{2}}[50 \times 68-(10)^{2}] \\ & =\dfrac{1}{25}[3400-100]=\dfrac{3300}{25} \\ & =132 \end{aligned} $

9. Find the mean, variance and standard deviation using short-cut method

Height
in cms
$70-75$ $75-80$ $80-85$ $85-90$ $90-95$ $95-100$ $100-105$ $105-110$ $110-115$
No. of
children
3 4 7 7 15 9 6 6 3
Show Answer

Answer :

Class $x_i$ $f_i$ $d_4=\frac{\left(x_i-a\right)}{h}$ $d_i^2$ $f_i d_i$ $f_i d_i^2$
$70-75$ 72.5 3 -4 16 -12 48
$75-80$ 77.5 4 -3 9 -12 36
$30-85$ 82.5 7 -2 4 -14 28
$85-90$ 87.5 7 -1 1 -7 7
$90-95$ 92.5 15 0 0 0 0
$95-100$ 97.5 9 1 1 9 9
$100-105$ 102.5 6 2 4 12 24
$100-110$ 107.5 6 3 9 18 54
$110-115$ 112.5 3 4 16 12 48
60 6 254

$\begin{aligned} & \therefore \text { Mean }=a+\left(\frac{\sum f_i . d_i}{N}\right) \times h \\ & =92 \cdot 5+\left(\frac{6}{60}\right) \times 5 \\ & =92 \cdot 5+0 \cdot 5=93 \\ & \text { Variance }=h^2\left[\frac{1}{N} \sum f_i . d_i^2-\left(\frac{\sum f_i . d_i}{N}\right)^2\right] \\ & =(5)^2\left[\frac{254}{60}-\left(\frac{6}{60}\right)^2\right] \\ & =25\left[\frac{127}{30}-\frac{1}{100}\right]=105-58 \\ & \text { S.D. }=\sqrt{\text { Variance }} \\ & =\sqrt{105-58}=10.27\end{aligned}$

10. The diameters of circles (in $mm$ ) drawn in a design are given below:

Diameters $33-36$ $37-40$ $41-44$ $45-48$ $49-52$
No. of circles 15 17 21 22 25

Calculate the standard deviation and mean diameter of the circles.

[ Hint First make the data continuous by making the classes as 32.5-36.5, 36.5-40.5, $40.5-44.5,44.5$ - 48.5, 48.5 - 52.5 and then proceed.]

Show Answer

Answer :

Class Interval Frequency $\boldsymbol{{}f}_i$ Mid-point $\boldsymbol{{}x}_i$ $y_i=\dfrac{x_i-42.5}{4}$ $\boldsymbol{{}f}_i$ $\boldsymbol{{}f} _{y_i}$ $\boldsymbol{{}f} _{y_i}$
$32.5-36.5$ 15 34.5 $- 2$ 4 $ - 30$ 60
$36.5-40.5$ 17 38.5 $- 1$ 1 $- 17$ 17
$40.5-44.5$ 21 42.5 0 0 0 0
$44.5-48.5$ 22 46.5 1 1 22 22
$48.5-52.5$ 25 50.5 2 4 50 100
100 25 199

Here, $N=100, h=4$

Let the assumed mean, $A$, be 42.5 .

$ \bar{{}x}=A+\dfrac{\sum _{i=1}^{5} f_i y_i}{N} \times h=42.5+\dfrac{25}{100} \times 4=43.5 $

$Variance(\sigma^{2})=\dfrac{h^{2}}{N^{2}}[N \sum _{i=1}^{5} f_i y_i{ }^{2}-(\sum _{i=1}^{5} f_i y_i)^{2}]$

$ \begin{aligned} & =\dfrac{16}{10000}[100 \times 199-(25)^{2}] \\ & =\dfrac{16}{10000}[19900-625] \\ & =\dfrac{16}{10000} \times 19275 \\ & =30.84 \end{aligned} $

$\therefore S \tan$ dard deviation $(\sigma)=5.55$



Table of Contents