Chapter 13 Statistics EXERCISE 13.2
EXERCISE 13.2
Find the mean and variance for each of the data in Exercies 1 to 5.
1. $6,7,10,12,13,4,8,12$
Show Answer
Answer :
$6,7,10,12,13,4,8,12$
Mean, $\overline{x}=\dfrac{\sum _{i=1}^{8} x_i}{n}=\dfrac{6+7+10+12+13+4+8+12}{8}=\dfrac{72}{8}=9$
The following table is obtained.
$X_i$ | $(x_i-\bar{{}x})$ | $(x_i-\overline{x})^{2}$ |
---|---|---|
6 | $- $3 | 9 |
7 | $- 2$ | 4 |
10 | $- 1$ | 1 |
12 | 3 | 9 |
13 | 4 | 16 |
4 | -5 | 25 |
8 | $- $1 | 1 |
12 | 3 | 9 |
74 |
Variance $(\sigma^{2})=\dfrac{1}{n} \sum _{i=1}^{8}(x_i-\bar{{}x})^{2}=\dfrac{1}{8} \times 74=9.25$
2. First $n$ natural numbers
Show Answer
Answer :
The mean of first $n$ natural numbers is calculated as follows.
Mean $=\dfrac{\text{ Sum of all observations }}{\text{ Number of observations }}$ $\therefore$ Mean $=\dfrac{\dfrac{n(n+1)}{2}}{n}=\dfrac{n+1}{2}$
Variance $(\sigma^{2})=\dfrac{1}{n} \sum _{i=1}^{n}(x_i-\bar{{}x})^{2}$
$=\dfrac{1}{n} \sum _{i=1}^{n}[x_i-(\dfrac{n+1}{2})]^{2}$
$=\dfrac{1}{n} \sum _{i=1}^{n} x_i{ }^{2}-\dfrac{1}{n} \sum _{i=1}^{n} 2(\dfrac{n+1}{2}) x_i+\dfrac{1}{n} \sum _{i=1}^{n}(\dfrac{n+1}{2})^{2}$
$=\dfrac{1}{n} \dfrac{n(n+1)(2 n+1)}{6}-(\dfrac{n+1}{n})[\dfrac{n(n+1)}{2}]+\dfrac{(n+1)^{2}}{4 n} \times n$
$=\dfrac{(n+1)(2 n+1)}{6}-\dfrac{(n+1)^{2}}{2}+\dfrac{(n+1)^{2}}{4}$
$=\dfrac{(n+1)(2 n+1)}{6}-\dfrac{(n+1)^{2}}{4}$
$=(n+1)[\dfrac{4 n+2-3 n-3}{12}]$
$=\dfrac{(n+1)(n-1)}{12}$
$=\dfrac{n^{2}-1}{12}$
3. First 10 multiples of 3
Show Answer
Answer :
The first 10 multiples of 3 are
$3,6,9,12,15,18,21,24,27,30$
Here, number of observations, $n=10$
Mean, $\bar{{}x}=\dfrac{\sum _{i=1}^{10} x_i}{10}=\dfrac{165}{10}=16.5$
The following table is obtained.
$x_i$ | $(x_i-\overline{x})$ | $(x_i-\overline{x})^{2}$ |
---|---|---|
3 | $- 13.5$ | 182.25 |
6 | $- 10.5$ | 110.25 |
9 | $- $ 7.5 | 56.25 |
12 | $- $ 4.5 | 20.25 |
15 | $- $ 1.5 | 2.25 |
18 | 1.5 | 2.25 |
21 | 4.5 | 20.25 |
24 | 7.5 | 56.25 |
27 | 10.5 | 110.25 |
30 | 13.5 | 182.25 |
742.5 |
Variance $(\sigma^{2})=\dfrac{1}{n} \sum _{i=1}^{10}(x_i-\overline{x})^{2}=\dfrac{1}{10} \times 742.5=74.25$
4.
$x_i$ | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
---|---|---|---|---|---|---|---|
$f_i$ | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
Show Answer
Answer :
The data is obtained in tabular form as follows.
$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f} \boldsymbol{{}i}$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}} \boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $x_i-\overline{x}$ | $(x_i-\overline{x})^{2}$ | $f_i(x_i-\overline{x})^{2}$ |
---|---|---|---|---|---|
6 | 2 | 12 | $- 13$ | 169 | 338 |
10 | 4 | 40 | $- 9$ | 81 | 324 |
14 | 7 | 98 | $- $5 | 25 | 175 |
18 | 12 | 216 | - 1 | 1 | 12 |
---|---|---|---|---|---|
24 | 8 | 192 | 5 | 25 | 200 |
28 | 4 | 112 | 9 | 81 | 324 |
30 | 3 | 90 | 11 | 121 | 363 |
40 | 760 | 1736 |
Here, $N=40, \quad \sum _{i=1}^{7} f_i x_i=760$
$\therefore \overline{x}=\dfrac{\sum _{i=1}^{7} f_i x_i}{N}=\dfrac{760}{40}=19$
Variance $=(\sigma^{2})=\dfrac{1}{N} \sum _{i=1}^{7} f_i(x_i-\bar{{}x})^{2}=\dfrac{1}{40} \times 1736=43.4$
5.
$x_i$ | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
---|---|---|---|---|---|---|---|
$f_i$ | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
Show Answer
Answer :
The data is obtained in tabular form as follows.
$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f} \boldsymbol{{}i}$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}} \boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $x_i-\overline{x}$ | $(x_i-\overline{x})^{2}$ | $f_i(x_i-\overline{x})^{2}$ |
---|---|---|---|---|---|
92 | 3 | 276 | $- 8$ | 64 | 192 |
93 | 2 | 186 | $- 7$ | 49 | 98 |
97 | 3 | 291 | $- 3$ | 9 | 27 |
98 | 2 | 196 | $- 2$ | 4 | 8 |
102 | 6 | 612 | 2 | 4 | 24 |
104 | 3 | 312 | 4 | 16 | 48 |
109 | 3 | 327 | 9 | 81 | 243 |
---|---|---|---|---|---|
22 | 2200 | 640 |
Here, $N=22$
$ \sum _{i=1}^{7} f_i x_i=2200 $
$\therefore \overline{x}=\dfrac{1}{N} \sum _{i=1}^{7} f_i x_i=\dfrac{1}{22} \times 2200=100$
$Variance(\sigma^{2})=\dfrac{1}{N} \sum _{i=1}^{7} f_i(x_i-\bar{{}x})^{2}=\dfrac{1}{22} \times 640=29.09$
6. Find the mean and standard deviation using short-cut method.
$x_i$ | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |
---|---|---|---|---|---|---|---|---|---|
$f_i$ | 2 | 1 | 12 | 29 | 25 | 12 | 10 | 4 | 5 |
Show Answer
Answer :
The data is obtained in tabular form as follows.
$\boldsymbol{{}X} _{\boldsymbol{{}i}}$ | $f_i$ | $f_i=\dfrac{x_i-64}{1}$ | $y_i^{2}$ | $f_i y_i$ | $f_i y_i^{2}$ |
---|---|---|---|---|---|
60 | 2 | $ - 4$ | 16 | - 8 | 32 |
61 | 1 | $ - 3$ | 9 | $- 3$ | 9 |
62 | 12 | $- 2$ | 4 | $- $ 24 | 48 |
63 | 29 | $- 1$ | 1 | -29 | 29 |
64 | 25 | 0 | 0 | 0 | 0 |
65 | 12 | 1 | 1 | 12 | 12 |
66 | 10 | 2 | 4 | 20 | 40 |
67 | 4 | 3 | 9 | 12 | 36 |
68 | 5 | 4 | 16 | 20 | 80 |
100 | 220 | 0 | 286 |
$\overline{x}=A \dfrac{\sum _{i=1}^{9} f_i y_i}{N} \times h=64+\dfrac{0}{100} \times 1=64+0=64$
Variance, $\sigma^{2}=\dfrac{h^{2}}{N^{2}}[N \sum _{i=1}^{9} f_i y_i{ }^{2}-(\sum _{i=1}^{9} f_i y_i)^{2}]$
$ \begin{aligned} & =\dfrac{1}{100^{2}}[100 \times 286-0] \\ & =2.86 \end{aligned} $
$\therefore S \tan$ dard deviation $(\sigma)=\sqrt{2.86}=1.69$
Find the mean and variance for the following frequency distributions in Exercises 7 and 8.
Find the mean and variance for the following frequency distributions in Exercises 7 and 8.
7.
Classes | $0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $150-180$ | $180-210$ |
---|---|---|---|---|---|---|---|
Frequencies | 2 | 3 | 5 | 10 | 3 | 5 | 2 |
Show Answer
Answer :
Class | Frequency $f_i$ | Mid-point $x_i$ | $y_i=\dfrac{x_i-105}{30}$ | $y_i^{2}$ | $f y_i$ | $f y_i^{2}$ |
---|---|---|---|---|---|---|
$0-30$ | 2 | 15 | $- $‘3 | 9 | -6 | 18 |
$30-60$ | 3 | 45 | $- 2$ | 4 | $- $ 6 | 12 |
$60-90$ | 5 | 75 | $- 1$ | 1 | $- 5$ | 5 |
$90-120$ | 10 | 105 | 0 | 0 | 0 | 0 |
$120-150$ | 3 | 135 | 1 | 1 | 3 | 3 |
$150-180$ | 5 | 165 | 2 | 4 | 10 | 20 |
$180-210$ | 2 | 195 | 3 | 9 | 6 | 18 |
30 | 2 | 76 |
Mean,
$ \begin{aligned} Variance(\sigma^{2}) & =\dfrac{h^{2}}{N^{2}}[N \sum _{i=1}^{7} f_i y_i^{2}-(\sum _{i=1}^{7} f_i y_i)^{2}] \\ & =\dfrac{(30)^{2}}{(30)^{2}}[30 \times 76-(2)^{2}] \\ & =2280-4 \\ & =2276 \end{aligned} $
8.
Classes | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
---|---|---|---|---|---|
Frequencies | 5 | 8 | 15 | 16 | 6 |
Show Answer
Answer :
Class | Frequency $\boldsymbol{{}f}_i$ |
Mid-point $\boldsymbol{{}x}_i$ | $y_i=\dfrac{x_i-25}{10}$ | $\boldsymbol{{}y}_i^{2}$ | $\boldsymbol{{}f y} _{i}$ | $\boldsymbol{{}f y} _{\mathbf{i}}{ }^{2}$ |
---|---|---|---|---|---|---|
$0-10$ | 5 | 5 | $- 2$ | 4 | $- 10$ | 20 |
$10-20$ | 8 | 15 | $- 1$ | 1 | $- 8$ | 8 |
$20-30$ | 15 | 25 | 0 | 0 | 0 | 0 |
$30-40$ | 16 | 35 | 1 | 1 | 16 | 16 |
$40-50$ | 6 | 45 | 2 | 4 | 12 | 24 |
50 | 10 | 68 |
$\overline{x}=A+\dfrac{\sum _{i=1}^{5} f_i y_i}{N} \times h=25+\dfrac{10}{50} \times 10=25+2=27$ $Variance(\sigma^{2})=\dfrac{h^{2}}{N^{2}}[N \sum _{i=1}^{5} f_i y_i{ }^{2}-(\sum _{i=1}^{5} f_i y_i)^{2}]$
$ \begin{aligned} & =\dfrac{(10)^{2}}{(50)^{2}}[50 \times 68-(10)^{2}] \\ & =\dfrac{1}{25}[3400-100]=\dfrac{3300}{25} \\ & =132 \end{aligned} $
9. Find the mean, variance and standard deviation using short-cut method
Height in cms |
$70-75$ | $75-80$ | $80-85$ | $85-90$ | $90-95$ | $95-100$ | $100-105$ | $105-110$ | $110-115$ |
---|---|---|---|---|---|---|---|---|---|
No. of children |
3 | 4 | 7 | 7 | 15 | 9 | 6 | 6 | 3 |
Show Answer
Answer :
Class | $x_i$ | $f_i$ | $d_4=\frac{\left(x_i-a\right)}{h}$ | $d_i^2$ | $f_i d_i$ | $f_i d_i^2$ |
---|---|---|---|---|---|---|
$70-75$ | 72.5 | 3 | -4 | 16 | -12 | 48 |
$75-80$ | 77.5 | 4 | -3 | 9 | -12 | 36 |
$30-85$ | 82.5 | 7 | -2 | 4 | -14 | 28 |
$85-90$ | 87.5 | 7 | -1 | 1 | -7 | 7 |
$90-95$ | 92.5 | 15 | 0 | 0 | 0 | 0 |
$95-100$ | 97.5 | 9 | 1 | 1 | 9 | 9 |
$100-105$ | 102.5 | 6 | 2 | 4 | 12 | 24 |
$100-110$ | 107.5 | 6 | 3 | 9 | 18 | 54 |
$110-115$ | 112.5 | 3 | 4 | 16 | 12 | 48 |
60 | 6 | 254 |
$\begin{aligned} & \therefore \text { Mean }=a+\left(\frac{\sum f_i . d_i}{N}\right) \times h \\ & =92 \cdot 5+\left(\frac{6}{60}\right) \times 5 \\ & =92 \cdot 5+0 \cdot 5=93 \\ & \text { Variance }=h^2\left[\frac{1}{N} \sum f_i . d_i^2-\left(\frac{\sum f_i . d_i}{N}\right)^2\right] \\ & =(5)^2\left[\frac{254}{60}-\left(\frac{6}{60}\right)^2\right] \\ & =25\left[\frac{127}{30}-\frac{1}{100}\right]=105-58 \\ & \text { S.D. }=\sqrt{\text { Variance }} \\ & =\sqrt{105-58}=10.27\end{aligned}$
10. The diameters of circles (in $mm$ ) drawn in a design are given below:
Diameters | $33-36$ | $37-40$ | $41-44$ | $45-48$ | $49-52$ |
---|---|---|---|---|---|
No. of circles | 15 | 17 | 21 | 22 | 25 |
Calculate the standard deviation and mean diameter of the circles.
[ Hint First make the data continuous by making the classes as 32.5-36.5, 36.5-40.5, $40.5-44.5,44.5$ - 48.5, 48.5 - 52.5 and then proceed.]
Show Answer
Answer :
Class Interval | Frequency $\boldsymbol{{}f}_i$ | Mid-point $\boldsymbol{{}x}_i$ | $y_i=\dfrac{x_i-42.5}{4}$ | $\boldsymbol{{}f}_i$ | $\boldsymbol{{}f} _{y_i}$ | $\boldsymbol{{}f} _{y_i}$ |
---|---|---|---|---|---|---|
$32.5-36.5$ | 15 | 34.5 | $- 2$ | 4 | $ - 30$ | 60 |
$36.5-40.5$ | 17 | 38.5 | $- 1$ | 1 | $- 17$ | 17 |
$40.5-44.5$ | 21 | 42.5 | 0 | 0 | 0 | 0 |
$44.5-48.5$ | 22 | 46.5 | 1 | 1 | 22 | 22 |
$48.5-52.5$ | 25 | 50.5 | 2 | 4 | 50 | 100 |
100 | 25 | 199 |
Here, $N=100, h=4$
Let the assumed mean, $A$, be 42.5 .
$ \bar{{}x}=A+\dfrac{\sum _{i=1}^{5} f_i y_i}{N} \times h=42.5+\dfrac{25}{100} \times 4=43.5 $
$Variance(\sigma^{2})=\dfrac{h^{2}}{N^{2}}[N \sum _{i=1}^{5} f_i y_i{ }^{2}-(\sum _{i=1}^{5} f_i y_i)^{2}]$
$ \begin{aligned} & =\dfrac{16}{10000}[100 \times 199-(25)^{2}] \\ & =\dfrac{16}{10000}[19900-625] \\ & =\dfrac{16}{10000} \times 19275 \\ & =30.84 \end{aligned} $
$\therefore S \tan$ dard deviation $(\sigma)=5.55$