Chapter 13 Statistics EXERCISE 13.1

EXERCISE 13.1

Find the mean deviation about the mean for the data in Exercises 1 and 2.

1. $4,7,8,9,10,12,13,17$

Show Answer

Answer :

The given data is

$4,7,8,9,10,12,13,17$

Mean of the data,

$ \bar{{}x}=\dfrac{4+7+8+9+10+12+13+17}{8}=\dfrac{80}{8}=10 $

The deviations of the respective observations from the mean $\bar{{}x}$, i.e. $x_i-\bar{{}x}$, are

-6, - 3, -2, -1, 0, 2, 3, 7

The absolute values of the deviations, i.e. $|x_i-\bar{{}x}|$, are

$6,3,2,1,0,2,3,7$

The required mean deviation about the mean is

M.D. $(\bar{{}x})=\dfrac{\sum _{i=1}^{8}|x_i-\bar{{}x}|}{8}=\dfrac{6+3+2+1+0+2+3+7}{8}=\dfrac{24}{8}=3$

2. $38,70,48,40,42,55,63,46,54,44$

Show Answer

Answer :

The given data is

$38,70,48,40,42,55,63,46,54,44$

Mean of the given data, $\bar{{}x}=\dfrac{38+70+48+40+42+55+63+46+54+44}{10}=\dfrac{500}{10}=50$

The deviations of the respective observations from the mean $\bar{{}x}$, i.e. $x_i-\bar{{}x}$, are

-12, 20, -2, -10, -8, 5, 13, -4, 4, -6

The absolute values of the deviations, i.e. $|x_i-\bar{{}x}|$, are

$12,20,2,10,8,5,13,4,4,6$

The required mean deviation about the mean is

$ \begin{aligned} \text{ M.D. }(\bar{{}x}) & =\dfrac{\sum _{i=1}^{10}|x_i-\bar{{}x}|}{10} \\ & =\dfrac{12+20+2+10+8+5+13+4+4+6}{10} \\ & =\dfrac{84}{10} \\ & =8.4 \end{aligned} $

Find the mean deviation about the median for the data in Exercises 3 and 4.

3. $13,17,16,14,11,13,10,16,11,18,12,17$

Show Answer

Answer :

The given data is

$13,17,16,14,11,13,10,16,11,18,12,17$

Here, the numbers of observations are 12 , which is even.

Arranging the data in ascending order, we obtain

$10,11,11,12,13,13,14,16,16,17,17,18$

Median, $M=\dfrac{(\dfrac{12}{2})^{t / h} \text{ observation }+(\dfrac{12}{2}+1)^{t / h} \text{ observation }}{2}$

$ \begin{aligned} & =\dfrac{6^{\text{th }} \text{ observation }+7^{\text{th }} \text{ observation }}{2} \\ & =\dfrac{13+14}{2}=\dfrac{27}{2}=13.5 \end{aligned} $

The deviations of the respective observations from the median, i.e. ${ }^{x_i-M}$, are -3.5, -2.5, -2.5, -1.5, -0.5, -0.5, 0.5, 2.5, 2.5, 3.5, 3.5, 4.5

The absolute values of the deviations, $|x_i-M|$, are

$3.5,2.5,2.5,1.5,0.5,0.5,0.5,2.5,2.5,3.5,3.5,4.5$

The required mean deviation about the median is

$ \begin{aligned} \text{ M.D. }(M) & =\dfrac{\sum _{i=1}^{12}|x_i-M|}{12} \\ & =\dfrac{3.5+2.5+2.5+1.5+0.5+0.5+0.5+2.5+2.5+3.5+3.5+4.5}{12} \\ & =\dfrac{28}{12}=2.33 \end{aligned} $

4. $36,72,46,42,60,45,53,46,51,49$

Show Answer

Answer :

The given data is

$36,72,46,42,60,45,53,46,51,49$

Here, the number of observations is 10 , which is even.

Arranging the data in ascending order, we obtain

$36,42,45,46,46,49,51,53,60,72$

$ \begin{aligned} \text{ Median } M & =\dfrac{(\dfrac{10}{2})^{t h} \text{ observation }+(\dfrac{10}{2}+1)^{t / h} \text{ observation }}{2} \\ & =\dfrac{5^{\text{th }} \text{ observation }+6^{\text{th }} \text{ observation }}{2} \\ & =\dfrac{46+49}{2}=\dfrac{95}{2}=47.5 \end{aligned} $

The deviations of the respective observations from the median, i.e. $x_i-M$, are

-11.5, -5.5, -2.5, -1.5, -1.5, 1.5, 3.5, 5.5, 12.5, 24.5

The absolute values of the deviations, $|x_i-M|$, are

$11.5,5.5,2.5,1.5,1.5,1.5,3.5,5.5,12.5,24.5$

Thus, the required mean deviation about the median is

$ \begin{aligned} \text{ M.D. }(M) & =\dfrac{\sum _{i=1}^{10}|x_i-M|}{10}=\dfrac{11.5+5.5+2.5+1.5+1.5+1.5+3.5+5.5+12.5+24.5}{10} \\ & =\dfrac{70}{10}=7 \end{aligned} $

Find the mean deviation about the mean for the data in Exercises 5 and 6.

5. $\begin{array}{lllll} x_i {~5}& 10 & 15 & 20 & 25 \\ f_i {~7} & 4 & 6 & 3 & 5 \end{array}$

Show Answer

Answer :

$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f}_i \boldsymbol{{}x} _{\boldsymbol{{}i}}$ $|\mathbf{x} _i-\overline{\mathbf{x}}|$ $\mathbf{f} _{\mathbf{i}}|\mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}|$
5 7 35 9 63
10 4 40 4 16
15 6 90 1 6
20 3 60 6 18
25 5 125 11 55
25 350 158

$N=\sum _{i=1}^{5} f_i=25$

$\sum _{i=1}^{5} f_i x_i=350$

$\therefore \overline{x}=\dfrac{1}{N} \sum _{i=1}^{5} f_i x_i=\dfrac{1}{25} \times 350=14$

$\therefore MD(\overline{x})=\dfrac{1}{N} \sum _{i=1}^{5} f_i|x_i-\overline{x}|=\dfrac{1}{25} \times 158=6.32$

6. $\begin{array}{lllll} x_i {~10}& 30 & 50 & 70 & 90 \\ f_i {~4} & 24 & 28 & 16 & 8 \end{array}$

Show Answer

Answer :

$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f} _{\boldsymbol{{}i}} \boldsymbol{{}x} _{\boldsymbol{{}i}}$ $|\mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}|$ $\mathbf{f} _{\mathbf{i}}|\mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}|$
10 4 40 40 160
30 24 720 20 480
50 28 1400 0 0
70 16 1120 20 320
90 8 720 40 320
80 4000 1280

$N=\sum _{i=1}^{5} f_i=80, \sum _{i=1}^{5} f_i x_i=4000$

$\therefore \overline{x}=\dfrac{1}{N} \sum _{i=1}^{5} f_i x_i=\dfrac{1}{80} \times 4000=50$

$MD(\overline{x}) \dfrac{1}{N} \sum _{i=1}^{5} f_i|x_i-\overline{x}|=\dfrac{1}{80} \times 1280=16$

Find the mean deviation about the median for the data in Exercises 7 and 8.

7. $\begin{array}{llllll} x_i {~5}& 7 & 9 & 10 & 12 & 15 \\ f_i {~8} & 6 & 2 & 2 & 2 & 6 \end{array}$

Show Answer

Answer :

The given observations are already in ascending order.

Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

$\boldsymbol{{}x}_i$ $\boldsymbol{{}f}_i$ $\boldsymbol{{}c}$. .
5 8 8
7 6 14
9 2 16
10 2 18
12 2 20
15 6 26

Here, $N=26$, which is even.

Median is the mean of $13^{\text{th }}$ and $14^{\text{th }}$ observations. Both of these observations lie in the cumulative frequency 14 , for which the corresponding observation is 7 .

$\therefore$ Median $=\dfrac{13^{\text{is }} \text{ observation }+14^{\text{th }} \text{ observation }}{2}=\dfrac{7+7}{2}=7$

The absolute values of the deviations from median, i.e. $|x_i-M|$, are

$|\boldsymbol{{}x} _{\boldsymbol{{}i}}- \boldsymbol{{}M}|$ 2 0 2 3 5 8
$\boldsymbol{{}f} _{\boldsymbol{{}i}}$ 8 6 2 2 2 6
16 0 4 6 10 48
$\boldsymbol{{}f} _{\boldsymbol{{}i}}|\boldsymbol{{}x} _{\boldsymbol{{}i}} -\mathbf{M}|$

$ \begin{aligned} & \sum _{i=1}^{6} f_i=26 \quad \sum _{i=1}^{6} f_i|x_i-M|=84 \\ & \text{ M.D.(M) }=\dfrac{1}{N} \sum _{i=1}^{6} f_i|x_i-M|=\dfrac{1}{26} \times 84=3.23 \end{aligned} $

8. $\begin{array}{lllll} x_i {~15}& 21 & 27 & 50 & 35 \\ f_i {~3} & 5 & 6 & 7 & 8 \end{array}$

Show Answer

Answer :

The given observations are already in ascending order.

Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ $\boldsymbol{{}c}$. .
15 3 3
21 5 8
27 6 14
30 7 21
35 8 29

Here, $N=29$, which is odd.

$\therefore$ Median $=(\dfrac{29+1}{2}) _{\text{observation }=15^{\text{th }} \text{ observation }}^{\text{th }}$ on

This observation lies in the cumulative frequency 21 , for which the corresponding observation is 30 .

$\therefore$ Median $=30$

The absolute values of the deviations from median, i.e. $|x_i-M|$, are

$|x_i - \mathbf{M}|$ 15 9 3 0 5
$\boldsymbol{{}f}_i$ 3 5 6 7 8
$f_i|x_i - \mathbf{M}|$ 45 45 18 0 40

$ \begin{aligned} & \sum _{i=1}^{5} f_i=29, \sum _{i=1}^{5} f_i|x_i-M|=148 \\ & \quad \text{ M.D. }(M)=\dfrac{1}{N} \sum _{i=1}^{5} f_i|x_i-M|=\dfrac{1}{29} \times 148=5.1 \end{aligned} $

Find the mean deviation about the mean for the data in Exercises 9 and 10.

9.

Income per
day in ₹
0-100 100-200 200-300 300-400 400-500 500-60 0 600-700 700-800
Number
of persons
4 8 9 10 7 5 4 3
Show Answer

Answer :

The following table is formed.

Income per day Number of persons $f_i$ Mid-point $X_i$ $f_i x_i$ $|\mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}|$ $\mathbf{f} _i \mid \mathbf{x} _i-\overline{\mathbf{x}}$
$0 - 100$ 4 50 200 308 1232
100 - 200 8 150 1200 208 1664
200- 300 9 250 2250 108 972
300 - 400 10 350 3500 8 80
400 - 500 7 450 3150 92 644
500 - 600 5 550 2750 192 960
600 - 700 4 650 2600 292 1168
700 - 800 3 750 2250 392 1176
50 17900 7896

Here, $\quad N=\sum _{i=1}^{8} f_i=50, \sum _{i=1}^{8} f_i x_i=17900$

$\therefore \overline{x}=\dfrac{1}{N} \sum _{i=1}^{8} f_i x_i=\dfrac{1}{50} \times 17900=358$

M.D. $(\overline{x})=\dfrac{1}{N} \sum _{i=1}^{8} f_i|x_i-\overline{x}|=\dfrac{1}{50} \times 7896=157.92$

10.

Height in cms 95-105 105-115 115-12 125 -135 135-145 145-155
Number of boys 9 13 26 30 12 10
Show Answer

Answer :

The following table is formed.

Height in cms Number of boys $\boldsymbol{{}f}_i$ Mid-point $\boldsymbol{{}x}_i$ $\boldsymbol{{}f}_i \boldsymbol{{}x}_i$ $|\mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}|$ $\mathbf{f} _{\mathbf{i}}|\mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}|$
$95-105$ 9 100 900 25.3 227.7
$105-115$ 13 110 1430 15.3 198.9
$115-125$ 26 120 3120 5.3 137.8
$125-135$ 30 130 3900 4.7 141
$135-145$ 12 140 1680 14.7 176.4
$145-155$ 10 150 1500 24.7 247

Here, $\quad N=\sum _{i=1}^{6} f_i=100, \sum _{i=1}^{6} f_i x_i=12530$

$\therefore \overline{x}=\dfrac{1}{N} \sum _{i=1}^{6} f_i x_i=\dfrac{1}{100} \times 12530=125.3$

M.D. $(\overline{x})=\dfrac{1}{N} \sum _{i=1}^{6} f_i|x_i-\overline{x}|=\dfrac{1}{100} \times 1128.8=11.28$

11. Find the mean deviation about median for the following data :

Marks $0-10$ $10-20$ $20-30$ $30-40$ $40-50$ $50-60$
Number of
Girls
6 8 14 16 4 2
Show Answer

Answer :

$ \begin{array}{|c|c|c|c|c|c|} \hline \text { Marks } & \begin{array}{|c|c|c|c|c|c|} \text { Mid values } \\ x_i \end{array} & f_i & \text { e.f. } & \left|x_i-27.86\right| & f_i\left|x_i-27.86\right| \\ \hline 0-10 & 5 & 6 & 6 & 22.86 & 137.16 \\ 10-20 & 15 & 8 & 14 & 12.86 & 102.88 \\ 20-30 & 25 & 14 & 28 & 2.86 & 40.04 \\ 30-40 & 35 & 16 & 44 & 7.14 & 114.24 \\ 40-50 & 45 & 4 & 48 & 17.14 & 68.56 \\ 50-60 & 55 & 2 & 50 & 27.14 & 54.28 \\ \hline & & 50 & & & 517.16 \\ \hline \end{array} $

$ \dfrac{\mathrm{N}}{2}=\dfrac{5 \mathrm{O}}{2}=25 $

$\therefore$ Median class is 20-30 $\therefore$

Median $=20+\dfrac{25-14}{14} \times 10=20+7.86=27.86$

M.D. about median $=\dfrac{1}{N} \sum _{i=1}^n f i\left|x_i-M\right|=\dfrac{1}{50} \times 517.16=10.34$

12. Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age
(in years)
$16-20$ $21-25$ $26-30$ $31-35$ $36-40$ $41-45$ $46-50$ $51-55$
Number 5 6 12 14 26 12 16 9

[Hint Convert the given data into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval]

Show Answer

Answer :

The given data is not continuous. Therefore, it has to be converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval.

The table is formed as follows.

Age Number $\boldsymbol{{}f}_i$ Cumulative frequency (c.f.) Mid-point $\boldsymbol{{}x}_i$ $\mid \boldsymbol{{}x}_i $ Med. $\mid$ $\boldsymbol{{}f} _{\boldsymbol{{}i}} \mid \boldsymbol{{}x} _{\boldsymbol{{}i}} -$ Med. $\mid$
$15.5-20.5$ 5 5 18 20 100
$20.5-25.5$ 6 11 23 15 90
$25.5-30.5$ 12 23 28 10 120
$30.5-35.5$ 14 37 33 5 70
$35.5-40.5$ 26 63 38 0 0
$40.5-45.5$ 12 75 43 5 60
$45.5-50.5$ 16 91 48 10 160
$50.5-55.5$ 9 100 53 15 735
100

The class interval containing the $\dfrac{N^{t h}}{2}$ or $50^{\text{th }}$ item is $35.5 - 40.5$.

Therefore, 35.5 - 40.5 is the median class.

It is known that,

Median $=l+\dfrac{\dfrac{N}{2}-C}{f} \times h$

Here, $I=35.5, C=37, f=26, h=5$, and $N=100$

$\therefore$ Median $=35.5+\dfrac{50-37}{26} \times 5=35.5+\dfrac{13 \times 5}{26}=35.5+2.5=38$

Thus, mean deviation about the median is given by,

M.D.(M) $=\dfrac{1}{N} \sum _{i=1}^{8} f_i|x_i-M|=\dfrac{1}{100} \times 735=7.35$



Table of Contents