Chapter 13 Statistics EXERCISE 13.1
EXERCISE 13.1
Find the mean deviation about the mean for the data in Exercises 1 and 2.
1. $4,7,8,9,10,12,13,17$
Show Answer
Answer :
The given data is
$4,7,8,9,10,12,13,17$
Mean of the data,
$ \bar{{}x}=\dfrac{4+7+8+9+10+12+13+17}{8}=\dfrac{80}{8}=10 $
The deviations of the respective observations from the mean $\bar{{}x}$, i.e. $x_i-\bar{{}x}$, are
-6, - 3, -2, -1, 0, 2, 3, 7
The absolute values of the deviations, i.e. $|x_i-\bar{{}x}|$, are
$6,3,2,1,0,2,3,7$
The required mean deviation about the mean is
M.D. $(\bar{{}x})=\dfrac{\sum _{i=1}^{8}|x_i-\bar{{}x}|}{8}=\dfrac{6+3+2+1+0+2+3+7}{8}=\dfrac{24}{8}=3$
2. $38,70,48,40,42,55,63,46,54,44$
Show Answer
Answer :
The given data is
$38,70,48,40,42,55,63,46,54,44$
Mean of the given data, $\bar{{}x}=\dfrac{38+70+48+40+42+55+63+46+54+44}{10}=\dfrac{500}{10}=50$
The deviations of the respective observations from the mean $\bar{{}x}$, i.e. $x_i-\bar{{}x}$, are
-12, 20, -2, -10, -8, 5, 13, -4, 4, -6
The absolute values of the deviations, i.e. $|x_i-\bar{{}x}|$, are
$12,20,2,10,8,5,13,4,4,6$
The required mean deviation about the mean is
$ \begin{aligned} \text{ M.D. }(\bar{{}x}) & =\dfrac{\sum _{i=1}^{10}|x_i-\bar{{}x}|}{10} \\ & =\dfrac{12+20+2+10+8+5+13+4+4+6}{10} \\ & =\dfrac{84}{10} \\ & =8.4 \end{aligned} $
Find the mean deviation about the median for the data in Exercises 3 and 4.
3. $13,17,16,14,11,13,10,16,11,18,12,17$
Show Answer
Answer :
The given data is
$13,17,16,14,11,13,10,16,11,18,12,17$
Here, the numbers of observations are 12 , which is even.
Arranging the data in ascending order, we obtain
$10,11,11,12,13,13,14,16,16,17,17,18$
Median, $M=\dfrac{(\dfrac{12}{2})^{t / h} \text{ observation }+(\dfrac{12}{2}+1)^{t / h} \text{ observation }}{2}$
$ \begin{aligned} & =\dfrac{6^{\text{th }} \text{ observation }+7^{\text{th }} \text{ observation }}{2} \\ & =\dfrac{13+14}{2}=\dfrac{27}{2}=13.5 \end{aligned} $
The deviations of the respective observations from the median, i.e. ${ }^{x_i-M}$, are -3.5, -2.5, -2.5, -1.5, -0.5, -0.5, 0.5, 2.5, 2.5, 3.5, 3.5, 4.5
The absolute values of the deviations, $|x_i-M|$, are
$3.5,2.5,2.5,1.5,0.5,0.5,0.5,2.5,2.5,3.5,3.5,4.5$
The required mean deviation about the median is
$ \begin{aligned} \text{ M.D. }(M) & =\dfrac{\sum _{i=1}^{12}|x_i-M|}{12} \\ & =\dfrac{3.5+2.5+2.5+1.5+0.5+0.5+0.5+2.5+2.5+3.5+3.5+4.5}{12} \\ & =\dfrac{28}{12}=2.33 \end{aligned} $
4. $36,72,46,42,60,45,53,46,51,49$
Show Answer
Answer :
The given data is
$36,72,46,42,60,45,53,46,51,49$
Here, the number of observations is 10 , which is even.
Arranging the data in ascending order, we obtain
$36,42,45,46,46,49,51,53,60,72$
$ \begin{aligned} \text{ Median } M & =\dfrac{(\dfrac{10}{2})^{t h} \text{ observation }+(\dfrac{10}{2}+1)^{t / h} \text{ observation }}{2} \\ & =\dfrac{5^{\text{th }} \text{ observation }+6^{\text{th }} \text{ observation }}{2} \\ & =\dfrac{46+49}{2}=\dfrac{95}{2}=47.5 \end{aligned} $
The deviations of the respective observations from the median, i.e. $x_i-M$, are
-11.5, -5.5, -2.5, -1.5, -1.5, 1.5, 3.5, 5.5, 12.5, 24.5
The absolute values of the deviations, $|x_i-M|$, are
$11.5,5.5,2.5,1.5,1.5,1.5,3.5,5.5,12.5,24.5$
Thus, the required mean deviation about the median is
$ \begin{aligned} \text{ M.D. }(M) & =\dfrac{\sum _{i=1}^{10}|x_i-M|}{10}=\dfrac{11.5+5.5+2.5+1.5+1.5+1.5+3.5+5.5+12.5+24.5}{10} \\ & =\dfrac{70}{10}=7 \end{aligned} $
Find the mean deviation about the mean for the data in Exercises 5 and 6.
5. $\begin{array}{lllll} x_i {~5}& 10 & 15 & 20 & 25 \\ f_i {~7} & 4 & 6 & 3 & 5 \end{array}$
Show Answer
Answer :
$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f}_i \boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $|\mathbf{x} _i-\overline{\mathbf{x}}|$ | $\mathbf{f} _{\mathbf{i}}|\mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}|$ |
---|---|---|---|---|
5 | 7 | 35 | 9 | 63 |
10 | 4 | 40 | 4 | 16 |
15 | 6 | 90 | 1 | 6 |
20 | 3 | 60 | 6 | 18 |
25 | 5 | 125 | 11 | 55 |
25 | 350 | 158 |
$N=\sum _{i=1}^{5} f_i=25$
$\sum _{i=1}^{5} f_i x_i=350$
$\therefore \overline{x}=\dfrac{1}{N} \sum _{i=1}^{5} f_i x_i=\dfrac{1}{25} \times 350=14$
$\therefore MD(\overline{x})=\dfrac{1}{N} \sum _{i=1}^{5} f_i|x_i-\overline{x}|=\dfrac{1}{25} \times 158=6.32$
6. $\begin{array}{lllll} x_i {~10}& 30 & 50 & 70 & 90 \\ f_i {~4} & 24 & 28 & 16 & 8 \end{array}$
Show Answer
Answer :
$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}} \boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $|\mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}|$ | $\mathbf{f} _{\mathbf{i}}|\mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}|$ |
---|---|---|---|---|
10 | 4 | 40 | 40 | 160 |
30 | 24 | 720 | 20 | 480 |
50 | 28 | 1400 | 0 | 0 |
70 | 16 | 1120 | 20 | 320 |
90 | 8 | 720 | 40 | 320 |
80 | 4000 | 1280 |
$N=\sum _{i=1}^{5} f_i=80, \sum _{i=1}^{5} f_i x_i=4000$
$\therefore \overline{x}=\dfrac{1}{N} \sum _{i=1}^{5} f_i x_i=\dfrac{1}{80} \times 4000=50$
$MD(\overline{x}) \dfrac{1}{N} \sum _{i=1}^{5} f_i|x_i-\overline{x}|=\dfrac{1}{80} \times 1280=16$
Find the mean deviation about the median for the data in Exercises 7 and 8.
7. $\begin{array}{llllll} x_i {~5}& 7 & 9 & 10 & 12 & 15 \\ f_i {~8} & 6 & 2 & 2 & 2 & 6 \end{array}$
Show Answer
Answer :
The given observations are already in ascending order.
Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.
$\boldsymbol{{}x}_i$ | $\boldsymbol{{}f}_i$ | $\boldsymbol{{}c}$. . |
---|---|---|
5 | 8 | 8 |
7 | 6 | 14 |
9 | 2 | 16 |
---|---|---|
10 | 2 | 18 |
12 | 2 | 20 |
15 | 6 | 26 |
Here, $N=26$, which is even.
Median is the mean of $13^{\text{th }}$ and $14^{\text{th }}$ observations. Both of these observations lie in the cumulative frequency 14 , for which the corresponding observation is 7 .
$\therefore$ Median $=\dfrac{13^{\text{is }} \text{ observation }+14^{\text{th }} \text{ observation }}{2}=\dfrac{7+7}{2}=7$
The absolute values of the deviations from median, i.e. $|x_i-M|$, are
$|\boldsymbol{{}x} _{\boldsymbol{{}i}}- \boldsymbol{{}M}|$ | 2 | 0 | 2 | 3 | 5 | 8 |
---|---|---|---|---|---|---|
$\boldsymbol{{}f} _{\boldsymbol{{}i}}$ | 8 | 6 | 2 | 2 | 2 | 6 |
16 | 0 | 4 | 6 | 10 | 48 | |
$\boldsymbol{{}f} _{\boldsymbol{{}i}}|\boldsymbol{{}x} _{\boldsymbol{{}i}} -\mathbf{M}|$ |
$ \begin{aligned} & \sum _{i=1}^{6} f_i=26 \quad \sum _{i=1}^{6} f_i|x_i-M|=84 \\ & \text{ M.D.(M) }=\dfrac{1}{N} \sum _{i=1}^{6} f_i|x_i-M|=\dfrac{1}{26} \times 84=3.23 \end{aligned} $
8. $\begin{array}{lllll} x_i {~15}& 21 & 27 & 50 & 35 \\ f_i {~3} & 5 & 6 & 7 & 8 \end{array}$
Show Answer
Answer :
The given observations are already in ascending order.
Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.
$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}c}$. . |
---|---|---|
15 | 3 | 3 |
21 | 5 | 8 |
27 | 6 | 14 |
---|---|---|
30 | 7 | 21 |
35 | 8 | 29 |
Here, $N=29$, which is odd.
$\therefore$ Median $=(\dfrac{29+1}{2}) _{\text{observation }=15^{\text{th }} \text{ observation }}^{\text{th }}$ on
This observation lies in the cumulative frequency 21 , for which the corresponding observation is 30 .
$\therefore$ Median $=30$
The absolute values of the deviations from median, i.e. $|x_i-M|$, are
$|x_i - \mathbf{M}|$ | 15 | 9 | 3 | 0 | 5 |
---|---|---|---|---|---|
$\boldsymbol{{}f}_i$ | 3 | 5 | 6 | 7 | 8 |
$f_i|x_i - \mathbf{M}|$ | 45 | 45 | 18 | 0 | 40 |
$ \begin{aligned} & \sum _{i=1}^{5} f_i=29, \sum _{i=1}^{5} f_i|x_i-M|=148 \\ & \quad \text{ M.D. }(M)=\dfrac{1}{N} \sum _{i=1}^{5} f_i|x_i-M|=\dfrac{1}{29} \times 148=5.1 \end{aligned} $
Find the mean deviation about the mean for the data in Exercises 9 and 10.
9.
Income per day in ₹ |
0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-60 | 0 600-700 | 700-800 |
---|---|---|---|---|---|---|---|---|
Number of persons |
4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |
Show Answer
Answer :
The following table is formed.
Income per day | Number of persons $f_i$ | Mid-point $X_i$ | $f_i x_i$ | $|\mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}|$ | $\mathbf{f} _i \mid \mathbf{x} _i-\overline{\mathbf{x}}$ |
---|---|---|---|---|---|
$0 - 100$ | 4 | 50 | 200 | 308 | 1232 |
100 - 200 | 8 | 150 | 1200 | 208 | 1664 |
200- 300 | 9 | 250 | 2250 | 108 | 972 |
300 - 400 | 10 | 350 | 3500 | 8 | 80 |
400 - 500 | 7 | 450 | 3150 | 92 | 644 |
500 - 600 | 5 | 550 | 2750 | 192 | 960 |
600 - 700 | 4 | 650 | 2600 | 292 | 1168 |
700 - 800 | 3 | 750 | 2250 | 392 | 1176 |
50 | 17900 | 7896 |
Here, $\quad N=\sum _{i=1}^{8} f_i=50, \sum _{i=1}^{8} f_i x_i=17900$
$\therefore \overline{x}=\dfrac{1}{N} \sum _{i=1}^{8} f_i x_i=\dfrac{1}{50} \times 17900=358$
M.D. $(\overline{x})=\dfrac{1}{N} \sum _{i=1}^{8} f_i|x_i-\overline{x}|=\dfrac{1}{50} \times 7896=157.92$
10.
Height in cms | 95-105 | 105-115 | 115-12 | 125 -135 | 135-145 | 145-155 | ||
---|---|---|---|---|---|---|---|---|
Number of boys | 9 | 13 | 26 | 30 | 12 | 10 |
Show Answer
Answer :
The following table is formed.
Height in cms | Number of boys $\boldsymbol{{}f}_i$ | Mid-point $\boldsymbol{{}x}_i$ | $\boldsymbol{{}f}_i \boldsymbol{{}x}_i$ | $|\mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}|$ | $\mathbf{f} _{\mathbf{i}}|\mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}|$ |
---|---|---|---|---|---|
$95-105$ | 9 | 100 | 900 | 25.3 | 227.7 |
$105-115$ | 13 | 110 | 1430 | 15.3 | 198.9 |
$115-125$ | 26 | 120 | 3120 | 5.3 | 137.8 |
$125-135$ | 30 | 130 | 3900 | 4.7 | 141 |
$135-145$ | 12 | 140 | 1680 | 14.7 | 176.4 |
$145-155$ | 10 | 150 | 1500 | 24.7 | 247 |
Here, $\quad N=\sum _{i=1}^{6} f_i=100, \sum _{i=1}^{6} f_i x_i=12530$
$\therefore \overline{x}=\dfrac{1}{N} \sum _{i=1}^{6} f_i x_i=\dfrac{1}{100} \times 12530=125.3$
M.D. $(\overline{x})=\dfrac{1}{N} \sum _{i=1}^{6} f_i|x_i-\overline{x}|=\dfrac{1}{100} \times 1128.8=11.28$
11. Find the mean deviation about median for the following data :
Marks | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ |
---|---|---|---|---|---|---|
Number of Girls |
6 | 8 | 14 | 16 | 4 | 2 |
Show Answer
Answer :
$ \begin{array}{|c|c|c|c|c|c|} \hline \text { Marks } & \begin{array}{|c|c|c|c|c|c|} \text { Mid values } \\ x_i \end{array} & f_i & \text { e.f. } & \left|x_i-27.86\right| & f_i\left|x_i-27.86\right| \\ \hline 0-10 & 5 & 6 & 6 & 22.86 & 137.16 \\ 10-20 & 15 & 8 & 14 & 12.86 & 102.88 \\ 20-30 & 25 & 14 & 28 & 2.86 & 40.04 \\ 30-40 & 35 & 16 & 44 & 7.14 & 114.24 \\ 40-50 & 45 & 4 & 48 & 17.14 & 68.56 \\ 50-60 & 55 & 2 & 50 & 27.14 & 54.28 \\ \hline & & 50 & & & 517.16 \\ \hline \end{array} $
$ \dfrac{\mathrm{N}}{2}=\dfrac{5 \mathrm{O}}{2}=25 $
$\therefore$ Median class is 20-30 $\therefore$
Median $=20+\dfrac{25-14}{14} \times 10=20+7.86=27.86$
M.D. about median $=\dfrac{1}{N} \sum _{i=1}^n f i\left|x_i-M\right|=\dfrac{1}{50} \times 517.16=10.34$
12. Calculate the mean deviation about median age for the age distribution of 100 persons given below:
Age (in years) |
$16-20$ | $21-25$ | $26-30$ | $31-35$ | $36-40$ | $41-45$ | $46-50$ | $51-55$ |
---|---|---|---|---|---|---|---|---|
Number | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
[Hint Convert the given data into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval]
Show Answer
Answer :
The given data is not continuous. Therefore, it has to be converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval.
The table is formed as follows.
Age | Number $\boldsymbol{{}f}_i$ | Cumulative frequency (c.f.) | Mid-point $\boldsymbol{{}x}_i$ | $\mid \boldsymbol{{}x}_i $ Med. $\mid$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}} \mid \boldsymbol{{}x} _{\boldsymbol{{}i}} -$ Med. $\mid$ |
---|---|---|---|---|---|
$15.5-20.5$ | 5 | 5 | 18 | 20 | 100 |
$20.5-25.5$ | 6 | 11 | 23 | 15 | 90 |
$25.5-30.5$ | 12 | 23 | 28 | 10 | 120 |
$30.5-35.5$ | 14 | 37 | 33 | 5 | 70 |
$35.5-40.5$ | 26 | 63 | 38 | 0 | 0 |
$40.5-45.5$ | 12 | 75 | 43 | 5 | 60 |
$45.5-50.5$ | 16 | 91 | 48 | 10 | 160 |
$50.5-55.5$ | 9 | 100 | 53 | 15 | 735 |
100 |
The class interval containing the $\dfrac{N^{t h}}{2}$ or $50^{\text{th }}$ item is $35.5 - 40.5$.
Therefore, 35.5 - 40.5 is the median class.
It is known that,
Median $=l+\dfrac{\dfrac{N}{2}-C}{f} \times h$
Here, $I=35.5, C=37, f=26, h=5$, and $N=100$
$\therefore$ Median $=35.5+\dfrac{50-37}{26} \times 5=35.5+\dfrac{13 \times 5}{26}=35.5+2.5=38$
Thus, mean deviation about the median is given by,
M.D.(M) $=\dfrac{1}{N} \sum _{i=1}^{8} f_i|x_i-M|=\dfrac{1}{100} \times 735=7.35$