Chapter 1 Sets Miscellaneous Exercise
Miscellaneous Exercise on Chapter 1
1. Decide, among the following sets, which sets are subsets of one and another: $A=\{x: x \in \mathbf{R}.$ and $x$ satisfy $.x^{2}-8 x+12=0\}$,
$B=\{2,4,6\}, \quad C=\{2,4,6,8, \ldots\}, D=\{6\}$.
Show Answer
Answer :
$A=\{x: x \in R.$ and $x$ satisfies $.x^{2}-8 x+12=0\}$
2 and 6 are the only solutions of $x^{2}-8 x+12=0$.
$\therefore A=\{2,6\}$
$B=\{2,4,6\}, C=\{2,4,6,8 \ldots\}, D=\{6\}$
$\therefore D \subset A \subset B \subset C$
Hence, $A \subset B, A \subset C, B \subset C, D \subset A, D \subset B, D \subset C$
2. In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
(i) If $x \in A$ and $A \in B$, then $x \in B$
(ii) If $A \subset B$ and $B \in C$, then $A \in C$
(iii) If $A \subset B$ and $B \subset C$, then $A \subset C$
(iv) If $A \not \subset B$ and $B \not \subset C$, then $A \not \subset C$
(v) If $x \in A$ and $A \not \subset B$, then $x \in B$
(vi) If $A \subset B$ and $x \notin B$, then $x \notin A$
Show Answer
Answer :
(i) False
Let $A=\{1,2\}$ and $B=\{1,\{1,2\},\{3\}\}$
Now, $2 \in\{1,2\}$ and $\{1,2\} \in\{\{3\}, 1,\{1,2\}\}$
A $\in$ B
. However, $2 \notin\{\{3\}, 1,\{1,2\}\}$
(ii) False
Let $A=\{2\}, B=\{0,2\}$, and $C=\{1,\{0,2\}, 3\}$
As $A \subset B$
$B \in C$
However, $A \notin C$
(iii) True
Let $A \subset B$ and $B \subset C$.
Let $x \in A$
$\Rightarrow x \in B \quad[\because A \subset B]$
$\Rightarrow x \in C \quad[\because B \subset C]$
$\therefore A\subset C$
(iv) False
$ A=\{1,2\}, B=\{0,6,8\}, \text{ and } C=\{0,1,2,6,9\} $
Let Accordingly, $A \not \subset B$ and $B \not \subset C$.
However, $A \subset C$
(v) False
Let $A=\{3,5,7\}$ and $B=\{3,4,6\}$
Now, $ 5 \in A \text{ and } A \in B$
However, $5 \notin B$
(vi) True
Let $A \subset B$ and $x \notin B$.
To show: $x \notin A$
If possible, suppose $x \notin A$.
Then, $x \in B$, which is a contradiction as $x \notin B$
$\therefore x \notin A$
3. Let $A, B$, and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$. Show that $B=C$.
Show Answer
Answer :
Let, $A, B$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$.
To show: $B=C$
Let $x \in B$
$ \begin{matrix} \Rightarrow x \in A \cup B & {[B \subset A \cup B]} \\ \Rightarrow x \in A \cup C & {[A \cup B=A \cup C]} \\ \Rightarrow x \in A \text{ or } x \in C & \end{matrix} $
Case $I x$
$\in A$
Also, $x \in B$
$ \begin{aligned} & \therefore x \in A \cap B \\ & \Rightarrow x \in A \cap C \quad[\because A \cap B=A \cap C] \end{aligned} $
$\therefore x \in A$ and $x \in C$ :
$x \in C$
$\therefore B \in C $
Similarly, we can show that $ C \in B $
$\therefore B=C$
4. Show that the following four conditions are equivalent:
(i) $A \subset B$ (ii) $A-B=\phi$
(iii) $A \cup B=B$ (iv) $A \cap B=A$
Show Answer
Answer :
First, we have to show that (i) $ \Leftrightarrow $ (ii).
Let $A \subset B$
To show: $A$ -$B = \phi $
If possible, suppose $A$ - $B \neq \Phi$
This means that there exists $x \in A, x \neq B$, which is not possible as $A \subset B$.
$\therefore A$ -$B=\Phi$
$ \therefore A \subset B \Rightarrow A - B = \phi $
(ii)$\Rightarrow$(i)
Let $A$ - $B=\Phi$
To show: $A \subset B$
Let $x \in A$
Clearly, $x \in B$ because if $x \notin B$, then $A$ - $B \neq \Phi$
$ \therefore A - B = 0 \Rightarrow A \subset B \neq \phi $
(ii)$\Rightarrow$(i)
Let $A \subset B$
To show: $A \cup B=B$
Clearly, $B \subset A \cup B$
Let $x \in A \cup B$
$\Rightarrow x \in A$ or $x \in B$
Case I: $x \in A$
$\Rightarrow x \in B \quad[\because A \subset B]$
$\therefore A \cup B \subset B$
Case II: $x \in B$
Then, $A \cup B=B$
Conversely, let $A \cup B=B$
Let $x \in A$
$ \begin{matrix} \Rightarrow x \in A \cup B & {[\because A \subset A \cup B]} \\ \Rightarrow x \in B & {[\because A \cup B=B]} \end{matrix} $
Now, we have to show that (i) $ \Rightarrow$ (iv).
$$ \begin{aligned} & \text{ Let } A \tilde{A} \hookrightarrow \mathring{A} B \\ & \text{ Clearly } A \cap B \subset A \\ & \text{ Let } x \in A \end{aligned} $$
We have to show that $x \in A \cap B$
As A $ \subset B, x \in B$
E
$x \in A \cap B$
$\therefore A \subset A \cap B$
$\therefore, A \subset A \cap B $
Hence, A = A $\cap $ B
Conversely, suppose $A \cap B =A$
Let $x \in A$
$\Rightarrow x \in A \cap B$
$\Rightarrow x \in A$ and $x \in B$
$\Rightarrow x \in B$
$\therefore A \subset B$
Hence, (i) $ \Rightarrow $ (iv).
5. Show that if $A \subset B$, then $C-B \subset C-A$.
Show Answer
Answer :
Let $A \subset B$
To show: C - B C C - A
Let $x \in C-B \Rightarrow x \in C$ and
$x \notin B \Rightarrow x \in C$ and $x \notin A[A$
$\subset B] \Rightarrow x \in C-A$
$\therefore C-B \subset C-A$
6. Show that for any sets $A$ and $B$, $A=(A \cap B) \cup(A-B)$ and $A \cup(B-A)=(A \cup B)$
Show Answer
Answer :
To show:
$ \begin{aligned} & (A \cap B) \cup(A-B) \\ & =(A \cap B) \cup\left(A \cap B^{\prime}\right) \\ & =A \cap\left(B \cup B^{\prime}\right) \text { (By distributive law) } \\ & =A \cap U=A \end{aligned} $
Hence $A=(A \cap B) \cup(A-B)$
Also $A \cup(B-A)$
$ \begin{aligned} & =A \cup\left(B \cap A^{\prime}\right) \\ & =(A \cup B) \cap\left(A \cup A^{\prime}\right) \text { (By distributive law) } \\ & =(A \cup B) \cap U \\ & =A \cup B \end{aligned} $
Hence $A \cup(B-A)=A \cup B$.
7. Using properties of sets, show that
(i) $A \cup(A \cap B)=A$
(ii) $A \cap(A \cup B)=A$.
Show Answer
Answer :
(i)
From the distributive property:
$ \begin{aligned} & A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\ & A \cup(A \cap B)=(A \cup A) \cap(A \cup B)=A \cap(A \cup B)=A \end{aligned} $
Hence,
$ A \cup(A \cap B)=A $
(ii)
From the distributive property:
$ \begin{aligned} & A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\ & A \cap(A \cup B)=(A \cap A) \cup(A \cap B)=A \cup(A \cap B) \end{aligned} $
From part (i),
$ A \cup(A \cap B)=A $
Hence,
$ A \cap(A \cup B)=A $
8. Show that $A \cap B=A \cap C$ need not imply $B=C$.
Show Answer
Answer :
$ \begin{aligned} & \text { Let } \mathrm{A}=\{0,1\} \ & \mathrm{B}=\{\mathrm{O}, 2,3\} \ & \mathrm{C}=\{0,4,5\} \end{aligned} $
So,
$A \cap B=\{0\}$
and $\mathrm{A} \cap \mathrm{C}=\{\mathrm{O}\}$
Here, $\mathrm{A} \cap \mathrm{B}=\mathrm{A} \cap \mathrm{C}=\{\mathrm{O}\}$
However, $\mathrm{B} \neq \mathrm{C}$ as $2 \in \mathrm{B}$ and $2 \notin \mathrm{C}$
9. Let $A$ and $B$ be sets. If $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set $X$, show that $A=B$.
(Hints $A=A \cap(A \cup X), B=B \cap(B \cup X)$ and use Distributive law )
Show Answer
Answer :
Let $\mathrm{A}$ and $\mathrm{B}$ be two sets such that
$\mathrm{A} \cap \mathrm{X}=\mathrm{B} \cap \mathrm{X}=\phi$ and $\mathrm{A} \cup \mathrm{X}=\mathrm{B} \cup \mathrm{X}$ for some set $\mathrm{X}$.
To show: $\mathrm{A}=\mathrm{B}$
It can be seen that
$ \begin{aligned} & A=A \cap(A \cup X) \\ & =A \cap(B \cup X)(A \cup X=B \cup X) \\ & =(A \cap B) \cup(A \cap X) \text { (Distributive law )} \\ & =(A \cap B) \cup \phi(\because A \cap X=\phi) \\ & =A \cap B . . . .(1) \end{aligned} $
Now, $\mathrm{B}=\mathrm{B} \cap(\mathrm{B} \cup \mathrm{X})$
$ \begin{aligned} & =\mathrm{B} \cap(\mathrm{A} \cup \mathrm{X})(\because \mathrm{A} \cup \mathrm{X}=\mathrm{B} \cup \mathrm{X}) \\ & =(\mathrm{B} \cap \mathrm{A}) \cup(\mathrm{B} \cap \mathrm{X}) \text { (Distributive law) } \\ & =(\mathrm{B} \cap \mathrm{A}) \cup \phi(\because \mathrm{B} \cap \mathrm{X}=\phi) \\ & =\mathrm{B} \cap \mathrm{A} \\ & =\mathrm{A} \cap \mathrm{B} . . . . .(2) \end{aligned} $
Hence, from (1) and (2), we get $ \mathrm{A}=\mathrm{B} $
10. Find sets $A, B$ and $C$ such that $A \cap B, B \cap C$ and $A \cap C$ are non-empty sets and $A \cap B \cap C=\phi$.
Show Answer
Answer :
Let $A=\{0,1\}, B=\{1,2\}$, and $C=\{2,0\}$.
Accordingly,
$A \cap B= \{1\}$,
$B \cap C=\{2\}$, and $A \cap C=\{0\}$.
$\therefore A \cap B, B \cap \odot C$, and $A \cap \odot C$ are non-empty.
However, $A \cap \odot B \cap \odot C=\Phi$