Unit 4 Chemical Kinetics (Exercises)
Exercises
4.1 From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.
$$ \begin{aligned} & \text { (i) } 3 \mathrm{NO} \text { (g) } \rightarrow \mathrm{N_2} \mathrm{O} \text { (g) } \text { Rate }=k[\mathrm{NO}]^{2} \\ & \text { (ii) } \mathrm{H_2} \mathrm{O_2} \text { (aq) }+3 \mathrm{I}^{-}(\mathrm{aq})+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H_2} \mathrm{O}(\mathrm{l})+\mathrm{I_3}^{-} \quad \text { Rate }=k\left[\mathrm{H_2} \mathrm{O_2}\right]\left[\mathrm{I}^{-}\right] \\ & \text {(iii) } \mathrm{CH_3} \mathrm{CHO} \text { (g) } \rightarrow \mathrm{CH_4} \text { (g) }+\mathrm{CO}(\mathrm{g}) \quad \text { Rate }=k\left[\mathrm{CH_3} \mathrm{CHO}\right]^{3 / 2} \\ & \text { (iv) } \mathrm{C_2} \mathrm{H_5} \mathrm{Cl} \text { (g) } \rightarrow \mathrm{C_2} \mathrm{H_4} \text { (g) }+\mathrm{HCl} \text { (g) } \text { Rate }=k\left[\mathrm{C_2} \mathrm{H_5} \mathrm{Cl}\right] \end{aligned} $$
Show Answer
Answer
(i) Given rate $=k[\mathrm{NO}]^{2}$
Therefore, order of the reaction $=2$
Dimension of $k=\frac{\text { Rate }}{[\mathrm{NO}]^{2}}$
$=\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}}$
$=\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\mathrm{~mol}^{2} \mathrm{~L}^{-2}}$
$=\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
(ii) Given rate $=k\left[\mathrm{H_2} \mathrm{O_2}\right]\left[\mathrm{l}^{-}\right]$
Therefore, order of the reaction $=2$
Dimension of $ k=\frac{\text { Rate }}{\left[\mathrm{H_2} \mathrm{O_2}\right]\left[\mathrm{I}^{-}\right]} $
$ \begin{aligned} & =\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)\left(\mathrm{mol} \mathrm{L}^{-1}\right)} \\ & =\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1} \end{aligned} $
(iii) Given rate $=k\left[\mathrm{CH_3} \mathrm{CHO}\right]^{3 / 2}$
Therefore, order of reaction $=\frac{3}{2}$
Dimension of $ k=\frac{\text { Rate }}{\left[\mathrm{CH_3} \mathrm{CHO}\right]^{\frac{3}{2}}} $
$ \begin{aligned} & =\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)^{\frac{3}{2}}} \\ & =\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\mathrm{~mol}^{\frac{3}{2}} \mathrm{~L}^{-\frac{3}{2}}} \\ & =\mathrm{L}^{\frac{1}{2}} \mathrm{~mol}^{-\frac{1}{2}} \mathrm{~s}^{-1} \end{aligned} $
(iv) Given rate $=k\left[\mathrm{C_2} \mathrm{H_5} \mathrm{Cl}\right]$
Therefore,order of the reaction $=1$
Dimension of $k=\frac{\text { Rate }}{\left[\mathrm{C_2} \mathrm{H_5} \mathrm{Cl}\right]}$
$=\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\mathrm{~mol} \mathrm{~L}^{-1}}$
$=\mathrm{s}^{-1}$
4.2 For the reaction: $ 2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{A_2} \mathrm{~B} $ the rate $=k[\mathrm{~A}][\mathrm{B}]^{2}$ with $\mathrm{k}=2.0 \times 10^{-6} \mathrm{~mol}^{-2} \mathrm{~L}^{2} \mathrm{~s}^{-1}$. Calculate the initial rate of the reaction when $[\mathrm{A}]=0.1 \mathrm{~mol} \mathrm{~L}^{-1},[\mathrm{~B}]=0.2 \mathrm{~mol} \mathrm{~L}^{-1}$. Calculate the rate of reaction after $[\mathrm{A}]$ is reduced to $0.06 \mathrm{~mol} \mathrm{~L}^{-1}$.
Show Answer
Answer
The initial rate of the reactionis
Rate $=k[\mathrm{~A}][\mathrm{B}]^{2}$
$=\left(2.0 \times 10^{-6} \mathrm{~mol}^{-2} \mathrm{~L}^{2} \mathrm{~S}^{-1}\right)\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.2 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}$
$=8.0 \times 10^{-9} \mathrm{~mol}^{-2} \mathrm{~L}^{2} \mathrm{~S}^{-1}$
When $[A]$ is reduced from $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$ to $0.06 \mathrm{~mol}^{-1}$, the concentration of A reacted $=(0.1-0.06) \mathrm{mol} \mathrm{L}^{-1}=0.04 \mathrm{~mol} \mathrm{~L}^{-1}$
Therefore, concentration of B reacted $=\frac{1}{2} \times 0.04 \mathrm{~mol} \mathrm{~L}^{-1}=0.02 \mathrm{~mol} \mathrm{~L}^{-1}$
Then, concentration of $B$ available, $[B]=(0.2-0.02) \mathrm{mol} \mathrm{L}^{-1}$
$=0.18 \mathrm{~mol} \mathrm{~L}^{-1}$
After $[A]$ is reduced to $0.06 \mathrm{~mol} \mathrm{~L}^{-1}$, the rate of the reaction is given by,
Rate $=k[\mathrm{~A}][\mathrm{B}]^{2}$
$=\left(2.0 \times 10^{-6} \mathrm{~mol}^{-2} \mathrm{~L}^{2} \mathrm{~S}^{-1}\right)\left(0.06 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.18 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}$ $=3.89 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~S}^{-1}$
4.3 The decomposition of $\mathrm{NH_3}$ on platinum surface is zero order reaction. What are the rates of production of $\mathrm{N_2}$ and $\mathrm{H_2}$ if $k=2.5 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$ ?
Show Answer
Answer
The decomposition of $\mathrm{NH_3}$ on platinum surface is represented by the following equation.
$2 \mathrm{NH_3(g)} \xrightarrow{\mathrm{Pt}} \mathrm{N_2(g)}+3 \mathrm{H_2(g)}$
Therefore,
Rate $=-\frac{1}{2} \frac{d\left[\mathrm{NH_3}\right]}{d t}=\frac{d\left[\mathrm{~N_2}\right]}{d t}=\frac{1}{3} \frac{d\left[\mathrm{H_2}\right]}{d t}$
However, it is given that the reaction is of zero order.
Therefore,
$$ \begin{aligned} -\frac{1}{2} \frac{d\left[\mathrm{NH_3}\right]}{d t}=\frac{d\left[\mathrm{~N_2}\right]}{d t}=\frac{1}{3} \frac{d\left[\mathrm{H_2}\right]}{d t} & =k \\ & =2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \end{aligned} $$
Therefore, the rate of production of $\mathrm{N_2}$ is
$$ \frac{d\left[\mathrm{~N_2}\right]}{d t}=2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} $$
And, the rate of production of $\mathrm{H_2}$ is
$$ \frac{d\left[\mathrm{H_2}\right]}{d t}=3 \times 2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} $$
$=7.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~S}^{-1}$
4.4 The decomposition of dimethyl ether leads to the formation of $\mathrm{CH_4}, \mathrm{H_2}$ and $\mathrm{CO}$ and the reaction rate is given by $ \text { Rate }=k\left[\mathrm{CH_3} \mathrm{OCH_3}\right]^{3 / 2} $ The rate of reaction is followed by increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e., $ \text { Rate }=k\left(p_{\mathrm{CH_3} \mathrm{OCH_3}}\right)^{3 / 2} $ If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?
Show Answer
Answer
If pressure is measured in bar and time in minutes, then
Unit of rate $=$ bar $\min ^{-1}$
Rate $=k\left(p_{\mathrm{CH_3} \mathrm{OCH_3}}\right)^{3 / 2}$
$\Rightarrow k=\frac{\text { Rate }}{\left(p_{\mathrm{CH_3} \mathrm{OCH_3}}\right)^{3 / 2}}$
Therefore, unit of rate constants $(k) = \frac{\text{bar min}^{-1}}{\text{bar}^{3/2}} $
$=\operatorname{bar}^{-1 / 2} \min ^{-1}$
4.5 Mention the factors that affect the rate of a chemical reaction.
Show Answer
Answer
The factors that affect the rate of a reaction areas follows.
(i) Concentration of reactants (pressure in case of gases)
(ii) Temperature
(iii) Presence of a catalyst
4.6 A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is
(i) doubled
(ii) reduced to half?
Show Answer
Answer
Letthe concentration of the reactant be $[\mathrm{A}]=\mathrm{a}$
Rate of reaction, $\mathrm{R}=k[\mathrm{~A}]^{2}$
$=k a^{2}$
(i)If the concentration of the reactant is doubled, i.e. $[A]=2 a$, then the rate of the reaction would be
$ \mathrm{R}^{\prime}=k(2 a)^{2} $
$=4 \mathrm{ka}^{2}$
$=4 \mathrm{R}$
Therefore, the rate of the reaction would increase by 4 times.
(ii) If the concentration of the reactant is reduced to half, i.e.$[\mathrm{A}]=\frac{1}{2} a$, then the reate of the reaction would be
$ \begin{aligned} & R^{*}=k\left(\frac{1}{2} a\right)^{2} \\ & =\frac{1}{4} k a^{2} \\ & =\frac{1}{4} R \end{aligned} $
Therefore, the rate of the reaction would be reduced to $\frac{1}{4}^{\text {th }}$.
4.7 What is the effect of temperature on the rate constant of a reaction? How can this effect of temperature on rate constant be represented quantitatively?
Show Answer
Answer
The rate constant is nearly doubled with a rise in temperature by $10^{\circ}$ for a chemical reaction.
The temperature effect on the rate constant can be represented quantitatively by Arrhenius equation,
$k=\mathrm{A} e^{-E_{\mathrm{s}} / \mathrm{R} T}$
where, kis the rate constant,
$A$ is the Arrhenius factor or the frequency factor,
$\mathrm{R}$ is the gas constant,
Tis the temperature, and
$E_{a}$ is the energy of activation for the reaction
4.8 In a pseudo first order reaction in water, the following results were obtained:
$\mathrm{t} / \mathrm{s}$ | 0 | 30 | 60 | 90 |
---|---|---|---|---|
$[\mathrm{A}] / \mathrm{mol} \mathrm{L}^{-1}$ | 0.55 | 0.31 | 0.17 | 0.085 |
Calculate the average rate of reaction between the time interval 30 to 60 seconds.
Show Answer
Answer
(i) Average rate of reaction between the time interval, 30 to 60 seconds, $ =\frac{d[\text { Ester }]}{d t} $
$ \begin{aligned} & =\frac{0.31-0.17}{60-30} \\ & =\frac{0.14}{30} \\ & =4.67 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \end{aligned} $
(ii) For a pseudo first order reaction,
$k=\frac{2.303}{t} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}$
For $t=30 \mathrm{~s}, \quad k_{1}=\frac{2.303}{30} \log \frac{0.55}{0.31}$
$=1.911 \times 10^{-2} \mathrm{~s}^{-1}$
For $t=60 \mathrm{~s}, \quad k_{2}=\frac{2.303}{60} \log \frac{0.55}{0.17}$
$=1.957 \times 10^{-2} \mathrm{~S}^{-1}$
For $t=90 \mathrm{~s}, \quad k_{3}=\frac{2.303}{90} \log \frac{0.55}{0.085}$
$=2.075 \times 10^{-2} \mathrm{~S}^{-1}$
Then, average rate constant,
$
k=\frac{k_{1}+k_{2}+k_{3}}{3}
$
$ \begin{aligned} & =\frac{\left(1.911 \times 10^{-2}\right)+\left(1.957 \times 10^{-2}\right)+\left(2.075 \times 10^{-2}\right)}{3} \\ & =1.98 \times 10^{-2} \mathrm{~s}^{-1} \end{aligned} $
4.9 A reaction is first order in A and second order in B.
(i) Write the differential rate equation.
(ii) How is the rate affected on increasing the concentration of $B$ three times?
(iii) How is the rate affected when the concentrations of both A and B are doubled?
Show Answer
Answer
(i) The differential rate equation will be
$ -\frac{d[\mathrm{R}]}{d t}=k[\mathrm{~A}][\mathrm{B}]^{2} $
(ii) If the concentration of $\mathrm{B}$ is increased three times, then
$ \begin{aligned} -\frac{d[\mathrm{R}]}{d t} & =k[\mathrm{~A}][3 \mathrm{~B}]^{2} \\ & =9 \cdot k[\mathrm{~A}][\mathrm{B}]^{2} \end{aligned} $
Therefore, the rate of reaction will increase 9 times.
(iii) When the concentrations of both $A$ and $B$ are doubled,
$ \begin{aligned} -\frac{d[\mathrm{R}]}{d t} & =k[\mathrm{~A}][\mathrm{B}]^{2} \\ & =k[2 \mathrm{~A}][2 \mathrm{~B}]^{2} \\ & =8 \cdot k[\mathrm{~A}][\mathrm{B}]^{2} \end{aligned} $
Therefore, the rate of reaction will increase 8 times.
4.10 In a reaction between $A$ and $B$, the initial rate of reaction $\left(r_{0}\right)$ was measured for different initial concentrations of $\mathrm{A}$ and $\mathrm{B}$ as given below: What is the order of the reaction with respect to $\mathrm{A}$ and $\mathrm{B}$ ?
$\mathrm{A} / \mathrm{mol} \mathrm{L}^{-1}$ | 0.20 | 0.20 | 0.40 |
---|---|---|---|
$\mathrm{B} / \mathrm{mol} \mathrm{L}^{-1}$ | 0.30 | 0.10 | 0.05 |
$\mathrm{r_0} / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$ | $5.07 \times 10^{-5}$ | $5.07 \times 10^{-5}$ | $1.43 \times 10^{-4}$ |
Show Answer
Answer
Let the order of the reaction with respect to $\mathrm{A}$ be xand with respect to $\mathrm{B}$ be $y$.
Therefore, $\mathrm{r_0}=k[\mathrm{~A}]^{x}[\mathrm{~B}]^{y}$
$5.07 \times 10^{-5}=k[0.20]^{x}[0.30]^{v}\quad \quad \quad \text{(i)}$
$5.07 \times 10^{-5}=k[0.20]^{x}[0.10]^{y}\quad \quad \quad \text{(ii)}$
$1.43 \times 10^{-4}=k[0.40]^{x}[0.05]^{y}\quad \quad \quad \text{(iii)}$
Dividing equation (i) by (ii), we obtain
$\frac{5.07 \times 10^{-5}}{5.07 \times 10^{-5}}=\frac{k[0.20]^{x}[0.30]^{y}}{k[0.20]^{x}[0.10]^{y}}$
$\Rightarrow 1=\frac{[0.30]^{y}}{[0.10]^{y}}$
$\Rightarrow\left(\frac{0.30}{0.10}\right)^{0}=\left(\frac{0.30}{0.10}\right)^{y}$
$\Rightarrow y=0$
Dividing equation (iii) by (ii), we obtain
$\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}}=\frac{k[0.40]^{x}[0.05]^{y}}{k[0.20]^{x}[0.30]^{y}}$
$\Rightarrow \frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}}=\frac{[0.40]^{x}}{[0.20]^{x}} \quad\left[\begin{array}{l}\text { Since } y=0, \\ {[0.05]^{y}=[0.30]^{y}=1}\end{array}\right]$
$\Rightarrow 2.821=2^{x}$
$\Rightarrow \log 2.821=x \log 2 \quad$ (Taking log on both sides)
$\Rightarrow x=\frac{\log 2.821}{\log 2}$
$=1.496$
$=1.5$ (approximately)
Hence, the order of the reaction with respect to $A$ is 1.5 and with respect to $B$ is zero.
4.11 The following results have been obtained during the kinetic studies of the reaction: $ 2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} $ Determine the rate law and the rate constant for the reaction.
Experiment | $[\mathrm{A}] / \mathrm{mol} \mathrm{L}^{-1}$ | $[\mathrm{~B}] / \mathrm{mol} \mathrm{L}^{-1}$ | Initial rate of formation of $\mathrm{D} / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}$ |
---|---|---|---|
I | 0.1 | 0.1 | $6.0 \times 10^{-3}$ |
II | 0.3 | 0.2 | $7.2 \times 10^{-2}$ |
III | 0.3 | 0.4 | $2.88 \times 10^{-1}$ |
IV | 0.4 | 0.1 | $2.40 \times 10^{-2}$ |
Show Answer
Answer
Let the order of the reaction with respect to $\mathrm{A}$ be xand with respect to $\mathrm{B}$ be $y$.
Therefore, rate of the reaction is given by,
Rate $=k[\mathrm{~A}]^{x}[\mathrm{~B}]^{y}$
According to the question,
$6.0 \times 10^{-3}=k[0.1]^{x}[0.1]^{y}\quad \quad \quad \text{(i)}$
$7.2 \times 10^{-2}=k[0.3]^{x}[0.2]^{y}\quad \quad \quad \text{(ii)}$
$2.88 \times 10^{-1}=k[0.3]^{x}[0.4]^{y}\quad \quad \quad \text{(iii)}$
$2.40 \times 10^{-2}=k[0.4]^{x}[0.1]^{y}\quad \quad \quad \text{(iv)}$
Dividing equation (iv) by (i), we obtain
$ \begin{aligned} & \frac{2.40 \times 10^{-2}}{6.0 \times 10^{-3}}=\frac{k[0.4]^{x}[0.1]^{y}}{k[0.1]^{x}[0.1]^{y}} \\ & \Rightarrow 4=\frac{[0.4]^{x}}{[0.1]^{x}} \\ & \Rightarrow 4=\left(\frac{0.4}{0.1}\right)^{x} \\ & \Rightarrow(4)^{1}=4^{x} \\ & \Rightarrow x=1 \end{aligned} $
Dividing equation (iii) by (ii), we obtain
Therefore, the rate law is
Rate $=k[\mathrm{~A}][\mathrm{B}]^{2}$
$\Rightarrow k=\frac{\text { Rate }}{[\mathrm{A}][\mathrm{B}]^{2}}$
From experiment I, we obtain
$k=\frac{6.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}}{\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}}$
$=6.0 \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~min}^{-1}$
From experiment II, weobtain
$k=\frac{7.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}}{\left(0.3 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.2 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}}$
$=6.0 \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~min}^{-1}$
From experiment III, we obtain
$k=\frac{2.88 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}}{\left(0.3 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.4 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}}$
$=6.0 \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~min}^{-1}$
From experiment IV, we obtain
$k=\frac{2.40 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}}{\left(0.4 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}}$
$=6.0 \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~min}^{-1}$
Therefore, rate constant, $k=6.0 \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~min}^{-1}$
4.12 The reaction between A and B is first order with respect to A and zero order with respect to $\mathrm{B}$. Fill in the blanks in the following table:
Experiment | $[\mathrm{A}] / \mathrm{mol} \mathrm{L}^{-1}$ | $[\mathrm{~B}] / \mathrm{mol} \mathrm{L}^{-1}$ | Initial rate/ $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}$ |
---|---|---|---|
I | 0.1 | 0.1 | $2.0 \times 10^{-2}$ |
II | - | 0.2 | $4.0 \times 10^{-2}$ |
III | 0.4 | 0.4 | - |
IV | - | 0.2 | $2.0 \times 10^{-2}$ |
Show Answer
Answer
The given reaction is of the first order with respect to $A$ and of zero order with respect to $B$.
Therefore, the rate of the reaction is given by,
Rate $=k[\mathrm{~A}]^{1}[\mathrm{~B}]^{0}$
$\Rightarrow$ Rate $=k[A]$
From experiment I, we obtain
$2.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}=\mathrm{k}\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)$
$\Rightarrow k=0.2 \mathrm{~min}^{-1}$
From experiment II, we obtain
$4.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}=0.2 \mathrm{~min}^{-1}[\mathrm{~A}]$
$\Rightarrow[\mathrm{A}]=0.2 \mathrm{~mol} \mathrm{~L}^{-1}$
From experiment III, we obtain
Rate $=0.2 \mathrm{~min}^{-1} \times 0.4 \mathrm{~mol} \mathrm{~L}^{-1}$
$=0.08 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
From experiment IV, we obtain
$2.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}=0.2 \mathrm{~min}^{-1}[\mathrm{~A}]$
$\Rightarrow[A]=0.1 \mathrm{~mol} \mathrm{~L}^{-1}$
4.13 Calculate the half-life of a first order reaction from their rate constants given below:
(i) $200 \mathrm{~s}^{-1}$
(ii) $2 \mathrm{~min}^{-1}$
(iii) 4 years $^{-1}$
Show Answer
Answer
(i) Half life, $t_{1 / 2}=\frac{0.693}{k}$
$=\frac{0.693}{200 \mathrm{~s}^{-1}}$
$=3.47 \times 10^{-3} \mathrm{~s}$ (approximately)
(ii) Half life, $t_{1 / 2}=\frac{0.693}{k}$
$=\frac{0.693}{2 \min ^{-1}}$
$=0.35 \mathrm{~min}$ (approximately) (iii) Half life, $t_{1 / 2}=\frac{0.693}{k}$
$=\frac{0.693}{4 \text { years }^{-1}}$
$=0.173$ years (approximately)
4.14 The half-life for radioactive decay of ${ }^{14} \mathrm{C}$ is 5730 years. An archaeological artifact containing wood had only $80 \%$ of the ${ }^{14} \mathrm{C}$ found in a living tree. Estimate the age of the sample.
Show Answer
Answer
Here, $k=\frac{0.693}{t_{1 / 2}}$
$=\frac{0.693}{5730}$ years $^{-1}$
It is known that,
$ \begin{aligned} t & =\frac{2.303}{k} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]} \\ & =\frac{2.303}{\frac{0.693}{5730}} \log \frac{100}{80} \end{aligned} $
$=1845$ years (approximately)
Hence, the age of the sample is 1845 years.
4.15 The experimental data for decomposition of $\mathrm{N_2} \mathrm{O_5}$ $ \left[2 \mathrm{~N_2} \mathrm{O_5} \rightarrow 4 \mathrm{NO_2}+\mathrm{O_2}\right] $ in gas phase at $318 \mathrm{~K}$ are given below:
$t / \mathrm{s}$ | 0 | 400 | 800 | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 |
---|---|---|---|---|---|---|---|---|---|
$10^{2} \times\left[\mathrm{N_2} \mathrm{O_5}\right] /$ $\mathrm{mol} \mathrm{L}^{-1}$ |
1.63 | 1.36 | 1.14 | 0.93 | 0.78 | 0.64 | 0.53 | 0.43 | 0.35 |
(i) Plot $\left[\mathrm{N_2} \mathrm{O_5}\right]$ against $t$.
(ii) Find the half-life period for the reaction.
(iii) Draw a graph between $\log \left[\mathrm{N_2} \mathrm{O_5}\right]$ and $t$.
(iv) What is the rate law ?
(v) Calculate the rate constant.
(vi) Calculate the half-life period from $k$ and compare it with (ii).
Show Answer
Answer
$~$$\mathrm{t}(\mathrm{s}) \longrightarrow$
(ii) Time corresponding to the concentration, $\frac{1.630 \times 10^{2}}{2} \mathrm{~mol} \mathrm{~L}^{-1}=81.5 \mathrm{~mol} \mathrm{~L}^{-1}$, is the half life. From the graph, the half life is obtained as $1450 \mathrm{~s}$.
(iii)
$\mathbf{t}(\mathbf{s})$ | $10^{2} \times\left[\mathrm{N_2} \mathrm{O_5}\right] / \mathrm{molL}^{-1}$ | $\log \left[\mathrm{N_2} \mathrm{O_5}\right]$ |
---|---|---|
0 | 1.63 | - 1.79 |
400 | 1.36 | - 1.87 |
800 | 1.14 | - 1.94 |
1200 | 0.93 | -2.03 |
1600 | 0.78 | -2.11 |
2000 | 0.64 | - 2.19 |
2400 | 0.53 | -2.28 |
2800 | 0.43 | -2.37 |
3200 | 0.35 | -2.46 |
(iv) The given reaction is of the first order as the plot, $\log \left[\mathrm{N_2} \mathrm{O_5}\right] \mathrm{v} / \mathrm{s} t$, is a straight line. Therefore, the rate law of the reaction is
Rate $=k\left[\mathrm{~N_2} \mathrm{O_5}\right]$
(v) From the plot, $\log \left[\mathrm{N_2} \mathrm{O_5}\right]$ v/s $t$, we obtain
$ \begin{aligned} \text { Slope } & =\frac{-2.46-(-1.79)}{3200-0} \\ & =\frac{-0.67}{3200} \end{aligned} $
Again, slope of the line of the plot $\log \left[\mathrm{N_2} \mathrm{O_5}\right]$ v/s $t$ is given by
$ -\frac{k}{2.303} $
Therefore, we obtain,
$ -\frac{k}{2.303}=-\frac{0.67}{3200} $
4.16 The rate constant for a first order reaction is $60 \mathrm{~s}^{-1}$. How much time will it take to reduce the initial concentration of the reactant to its $1 / 16^{\text {th }}$ value?
Show Answer
Answer
It is known that,
$ \begin{aligned} t & =\frac{2.303}{k} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]} \\ & =\frac{2.303}{60 \mathrm{~s}^{-1}} \log \frac{1}{1 / 16} \\ & =\frac{2.303}{60 \mathrm{~s}^{-1}} \log 16 \\ & =4.6 \times 10^{-2} \mathrm{~s} \text { (approximately) } \end{aligned} $
Hence, the required time is $4.6 \times 10^{-2} \mathrm{~s}$.
4.17 During nuclear explosion, one of the products is ${ }^{90} \mathrm{Sr}$ with half-life of 28.1 years. If $1 \mu \mathrm{g}$ of ${ }^{90} \mathrm{Sr}$ was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically.
Show Answer
Answer
Here,
$ k=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{28.1} \mathrm{y}^{-1} $
It is known that,
$ \begin{aligned} & t=\frac{2.303}{k} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]} \\ & \Rightarrow 10=\frac{2.303}{\frac{0.693}{28.1}} \log \frac{1}{[\mathrm{R}]} \\ & \Rightarrow 10=\frac{2.303}{\frac{0.693}{28.1}}(-\log [\mathrm{R}]) \\ & \Rightarrow \log [\mathrm{R}]=-\frac{10 \times 0.693}{2.303 \times 28.1} \\ & \Rightarrow[\mathrm{R}]=\operatorname{antilog}(-0.1071) \\ & \quad=\operatorname{antilog}(\overline{1} .8929) \\ & \quad=0.7814 \mu \mathrm{g} \end{aligned} $
Therefore, $0.7814 \mu \mathrm{~g}$ of ${ }^{90} \mathrm{Sr}$ will remain after 10 years.
Again,
$ \begin{aligned} & t=\frac{2.303}{k} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]} \\ & \Rightarrow 60=\frac{2.303}{\frac{0.693}{28.1}} \log \frac{1}{[\mathrm{R}]} \\ & \Rightarrow \log [\mathrm{R}]=-\frac{60 \times 0.693}{2.303 \times 28.1} \\ & \Rightarrow[\mathrm{R}]=\operatorname{antilog}(-0.6425) \\ & \quad=\operatorname{antilog}(\overline{1} .3575) \\ & \quad=0.2278 \mu \mathrm{g} \end{aligned} $
Therefore, $0.2278 \mu \mathrm{~g} $ of $ { }^{90} \mathrm{Sr}$ will remain after 60 years.
4.18 For a first order reaction, show that time required for $99 \%$ completion is twice the time required for the completion of $90 \%$ of reaction.
Show Answer
Answer
For a first order reaction, the time required for $99 \%$ completionis
$ \begin{aligned} t_{1} & =\frac{2.303}{k} \log \frac{100}{100-99} \\ & =\frac{2.303}{k} \log 100 \\ & =2 \times \frac{2.303}{k} \end{aligned} $
For a first order reaction, the time required for $90 \%$ completion is
$ \begin{aligned} t_{2} & =\frac{2.303}{k} \log \frac{100}{100-90} \\ & =\frac{2.303}{k} \log 10 \\ & =\frac{2.303}{k} \end{aligned} $
Therefore, $t_{1}=2 t_{2}$
Hence, the time required for $99 \%$ completion of a first order reaction is twice the time required for the completion of $90 \%$ of the reaction.
4.19 A first order reaction takes $40 \mathrm{~min}$ for $30 \%$ decomposition. Calculate $t_{1 / 2}$.
Show Answer
Answer
For a first order reaction,
$ \begin{aligned} t & =\frac{2.303}{k} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]} \\ k & =\frac{2.303}{40 \mathrm{~min}} \log \frac{100}{100-30} \\ & =\frac{2.303}{40 \mathrm{~min}} \log \frac{10}{7} \\ & =8.918 \times 10^{-3} \mathrm{~min}^{-1} \end{aligned} $
Therefore, $t_{1 / 2}$ of the decomposition reaction is
$ \begin{aligned} t_{1 / 2} & =\frac{0.693}{k} \\ & =\frac{0.693}{8.918 \times 10^{-3}} \mathrm{~min} \end{aligned} $
$=77.7 \mathrm{~min}$ (approximately)
4.20 For the decomposition of azoisopropane to hexane and nitrogen at 543 $\mathrm{K}$, the following data are obtained.
$t$ (sec) | $\mathrm{P}(\mathrm{mm}$ of $\mathrm{Hg}$ ) |
---|---|
0 | 35.0 |
360 | 54.0 |
720 | 63.0 |
Calculate the rate constant.
Show Answer
Answer
The decomposition of azoisopropane to hexane and nitrogen at $543 \mathrm{~K}$ is represented by the following equation.
$\mathrm{(CH_3)_2CHN=NCH(CH_3) }$ | $\mathrm{N_2(\mathrm{~g})}+\mathrm{C_6} \mathrm{H_14(\mathrm{~g})}$ | ||
---|---|---|---|
At $t=0$ | $\mathrm{P_0}$ | 0 | 0 |
At $t=t$ | $\mathrm{P_0}-p$ | $p$ | $p$ |
After time, $t$, total pressure, $\mathrm{P_t}=\left(\mathrm{P_0}-p\right)+p+p$
$\Rightarrow \mathrm{P_t}=\mathrm{P_0}+p$
$\Rightarrow p=\mathrm{P_\mathrm{t}}-\mathrm{P_0}$
Therefore, $\mathrm{P_\mathrm{o}}-p=\mathrm{P_\mathrm{o}}-\left(\mathrm{P_\mathrm{t}}-\mathrm{P_\mathrm{o}}\right)$
$=2 \mathrm{P_0}-\mathrm{P_t}$
For a first order reaction,
$k=\frac{2.303}{t} \log \frac{\mathrm{P_0}}{\mathrm{P_0}-p}$
$=\frac{2.303}{t} \log \frac{\mathrm{P_0}}{2 \mathrm{P_0}-\mathrm{P_t}}$
When $t=360 \mathrm{~s}, \quad k=\frac{2.303}{360 \mathrm{~s}} \log \frac{35.0}{2 \times 35.0-54.0}$
$=2.175 \times 10^{-3} \mathrm{~S}^{-1}$
When $t=720 \mathrm{~s}, \quad k=\frac{2.303}{720 \mathrm{~s}} \log \frac{35.0}{2 \times 35.0-63.0}$
$=2.235 \times 10^{-3} \mathrm{~S}^{-1}$
Hence, the average value of rate constant is
$k=\frac{\left(2.175 \times 10^{-3}\right)+\left(2.235 \times 10^{-3}\right)}{2} \mathrm{~s}^{-1}$
$=2.21 \times 10^{-3} \mathrm{~S}^{-1}$
Note: There is a slight variation in this answer and the one given in the NCERT textbook.
4.21 The following data were obtained during the first order thermal decomposition of $\mathrm{SO_2} \mathrm{Cl_2}$ at a constant volume. $ \mathrm{SO_2} \mathrm{Cl_2}(\mathrm{~g}) \rightarrow \mathrm{SO_2}(\mathrm{~g})+\mathrm{Cl_2}(\mathrm{~g}) $
Experiment | Time $/ \mathrm{s}^{-1}$ | Total pressure $/$ atm |
---|---|---|
1 | 0 | 0.5 |
2 | 100 | 0.6 |
Calculate the rate of the reaction when total pressure is $0.65 \mathrm{~atm}$.
Show Answer
Answer
The thermal decomposition of $\mathrm{SO_2} \mathrm{Cl_2}$ at a constant volume is represented by the following equation.
$\begin{array}{lllcc} & \mathrm{SO_2} \mathrm{Cl_{2(g)}} & \longrightarrow & \mathrm{SO_{2(g)}} &+\mathrm{Cl_{2(g)}} \\ \text { At } t=0 & \mathrm{P_0} & & 0 & 0 \\ \text { At } t=t & \mathrm{P_0}-\mathrm{p} & & \mathrm{p} & \mathrm{p} \end{array}$
After time, $t$, total pressure, $\mathrm{P_t}=\left(\mathrm{P_0}-p\right)+p+p$
$\Rightarrow \mathrm{P_t}=\mathrm{P_0}+p$
$\Rightarrow p=\mathrm{P_\mathrm{t}}-\mathrm{P_0}$
Therefore, $\mathrm{P_\mathrm{o}}-p=\mathrm{P_\mathrm{o}}-\left(\mathrm{P_\mathrm{t}}-\mathrm{P_\mathrm{o}}\right)$
$=2 P_{0}-P_{t}$
For a first order reaction,
$\begin{aligned} k & =\frac{2.303}{t} \log \frac{\mathrm{P_0}}{\mathrm{P_0}-p} \\ & =\frac{2.303}{t} \log \frac{\mathrm{P_0}}{2 \mathrm{P_0}-\mathrm{P_t}}\end{aligned}$
When $t=100 \mathrm{~s}, \quad k=\frac{2.303}{100 \mathrm{~s}} \log \frac{0.5}{2 \times 0.5-0.6}$
$=2.231 \times 10^{-3} \mathrm{~S}^{-1}$
When $\mathrm{P_t}=0.65 \mathrm{~atm}$,
$\mathrm{P_0}+p=0.65$
$\Rightarrow p=0.65-P_{0}$
$=0.65-0.5$
$=0.15 \mathrm{~atm}$
Therefore, when the total pressure is $0.65 \mathrm{~atm}$, pressure of $\mathrm{SOCl_2}$ is
$p_{\mathrm{SOCl_2}}=\mathrm{P_0}-\mathrm{p}$
$=0.5-0.15$
$=0.35 \mathrm{~atm}$
Therefore, the rate of equation, when total pressure is $0.65 \mathrm{~atm}$, is given by,
Rate $=k\left({ }^{p_{\mathrm{SOCl_2}}}\right)$
$=\left(2.23 \times 10^{-3} \mathrm{~S}^{-1}\right)(0.35 \mathrm{~atm})$
$=7.8 \times 10^{-4} \mathrm{~atm} \mathrm{~s} \mathrm{~s}^{-1}$
4.22 The rate constant for the decomposition of $\mathrm{N_2} \mathrm{O_5}$ at various temperatures is given below:
$T /{ }^{\circ} \mathrm{C}$ | 0 | 20 | 40 | 60 | 80 |
---|---|---|---|---|---|
$10^{5} \times \mathrm{k} / \mathrm{s}^{-1}$ | 0.0787 | 1.70 | 25.7 | 178 | 2140 |
Draw a graph between $\ln k$ and $1 / T$ and calculate the values of $A$ and $E_{\mathrm{a}}$. Predict the rate constant at $30^{\circ}$ and $50^{\circ} \mathrm{C}$.
Show Answer
Answer
From the given data, we obtain
$T /{ }^{\circ} \mathrm{C}$ | 0 | 20 | 40 | 60 | 80 |
---|---|---|---|---|---|
$T / \mathrm{K}$ | 273 | 293 | 313 | 333 | 353 |
$\frac{1}{T} / \mathrm{K}^{-1}$ | $3.66 \times 10^{-3}$ | $3.41 \times 10^{-3}$ | $3.19 \times 10^{-3}$ | $3.0 \times 10^{-3}$ | $2.83 \times 10^{-3}$ |
$10^{5} \times k / \mathrm{s}^{-1}$ | 0.0787 | 1.70 | 25.7 | 178 | 2140 |
$\ln k$ | -7.147 | -4.075 | -1.359 | -0.577 | 3.063 |
Slope of the line,
$$ \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-12.301 \mathrm{~K} $$
According to Arrhenius equation,
Slope $=-\frac{E_{a}}{\mathrm{R}}$
$\Rightarrow E_{a}=-$ Slope $\times \mathrm{R}$
$=-(-12.301 \mathrm{~K}) \times\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
$=102.27 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Again,
$\ln k=\ln A-\frac{E_{a}}{\mathrm{R} T}$
$\ln A=\ln k+\frac{E_{a}}{\mathrm{R} T}$
When $T=273 \mathrm{~K}$,
$\ln k=-7.147$
Then, $\ln A=-7.147+\frac{102.27 \times 10^{3}}{8.314 \times 273}$
$$ =37.911 $$
Therefore, $A=2.91 \times 10^{6}$
When $T=30+273 \mathrm{~K}=303 \mathrm{~K}$,
$\frac{1}{T}=0.0033 \mathrm{~K}=3.3 \times 10^{-3} \mathrm{~K}$
Then,
$$ \text { at } \frac{1}{T}=3.3 \times 10^{-3} \mathrm{~K} \text {, } $$
$\ln k=-2.8$
Therefore, $k=6.08 \times 10^{-2} \mathrm{~s}^{-1}$
Again, when $T=50+273 \mathrm{~K}=323 \mathrm{~K}$,
4.23 The rate constant for the decomposition of hydrocarbons is $2.418 \times 10^{-5} \mathrm{~s}^{-1}$ at $546 \mathrm{~K}$. If the energy of activation is $179.9 \mathrm{~kJ} / \mathrm{mol}$, what will be the value of pre-exponential factor.
Show Answer
Answer
$k=2.418 \times 10^{-5} \mathrm{~S}^{-1}$
$T=546 \mathrm{~K}$ $E_{\mathrm{a}}=179.9 \mathrm{~kJ} \mathrm{~mol}^{-1}=179.9 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$
According to the Arrhenius equation,
$k=\mathrm{Ae}^{-E_{\mathrm{a}} / \mathrm{R} T}$
$\Rightarrow \ln k=\ln \mathrm{A}-\frac{E_{a}}{\mathrm{R} T}$
$\Rightarrow \log k=\log \mathrm{A}-\frac{E_{a}}{2.303 \mathrm{R} T}$
$\Rightarrow \log \mathrm{A}=\log k+\frac{E_{a}}{2.303 \mathrm{R} T}$
$=\log \left(2.418 \times 10^{-5} \mathrm{~s}^{-1}\right)+\frac{179.9 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{2.303 \times 8.314 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1} \times 546 \mathrm{~K}}$
$=(0.3835-5)+17.2082$
$=12.5917$
Therefore, $\mathrm{A}=\operatorname{antilog}$ (12.5917)
$=3.9 \times 10^{12} \mathrm{~S}^{-1}$ (approximately)
4.24 Consider a certain reaction $\mathrm{A} \rightarrow$ Products with $k=2.0 \times 10^{-2} \mathrm{~s}^{-1}$. Calculate the concentration of $A$ remaining after $100 \mathrm{~s}$ if the initial concentration of $A$ is $1.0 \mathrm{~mol} \mathrm{~L}^{-1}$.
Show Answer
Answer
$k=2.0 \times 10^{-2} \mathrm{~s}^{-1}$
$T=100 \mathrm{~s}$
$[A]_{0}=1.0 \mathrm{moL}^{-1}$
Sincethe unit of $\mathrm{kis} \mathrm{s}^{-1}$, the given reaction is a first order reaction.
Therefore, $ k=\frac{2.303}{t} \log \frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]} $
$\Rightarrow 2.0 \times 10^{-2} \mathrm{~s}^{-1}=\frac{2.303}{100 \mathrm{~s}} \log \frac{1.0}{[\mathrm{~A}]}$
$\Rightarrow 2.0 \times 10^{-2} \mathrm{~s}^{-1}=\frac{2.303}{100 \mathrm{~s}}(-\log [\mathrm{A}])$
$\Rightarrow-\log [\mathrm{A}]=\frac{2.0 \times 10^{-2} \times 100}{2.303}$
$\Rightarrow[\mathrm{A}]=\operatorname{anti} \log \left(-\frac{2.0 \times 10^{-2} \times 100}{2.303}\right)$
$=0.135 \mathrm{~mol} \mathrm{~L}^{-1}$ (approximately)
Hence, the remaining concentration of $A$ is $0.135 \mathrm{~mol} \mathrm{~L}^{-1}$.
4.25 Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{1 / 2}=3.00$ hours. What fraction of sample of sucrose remains after 8 hours ?
Show Answer
Answer
For a first order reaction,
$k=\frac{2.303}{t} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}$
It is given that, $t_{1 / 2}=3.00$ hours
$ k=\frac{0.693}{t_{1 / 2}} $
Therefore,
$=\frac{0.693}{3} \mathrm{~h}^{-1}$
$=0.231 \mathrm{~h}^{-1}$
Then, $0.231 \mathrm{~h}^{-1}$
$ =\frac{2.303}{8 \mathrm{~h}} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]} $
$\Rightarrow \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}=\frac{0.231 \mathrm{~h}^{-1} \times 8 \mathrm{~h}}{2.303}$
$\Rightarrow \frac{[R]_{0}}{[R]}=\operatorname{antilog}(0.8024)$
$\Rightarrow \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}=6.3445$
$\Rightarrow \frac{[\mathrm{R}]}{[\mathrm{R}]_{0}}=0.1576$ (approx)
$ =0.158 $
Hence, the fraction of sample of sucrose that remains after 8 hours is 0.158 .
4.26 The decomposition of hydrocarbon follows the equation Calculate $E_{\text {a }}$. $ k=\left(4.5 \times 10^{11} \mathrm{~s}^{-1}\right) \mathrm{e}^{-28000 K / T} $
Show Answer
Answer
The given equation is
$k=\left(4.5 \times 10^{11} \mathrm{~s}^{-1}\right) \mathrm{e}^{-28000 \mathrm{KT}(\mathrm{i})}$
Arrhenius equation is given by,
$k=\mathrm{Ae}^{-E_{\alpha} / \mathrm{R} T}$
From equation (i) and (ii), we obtain
$\frac{E_{a}}{\mathrm{R} T}=\frac{28000 \mathrm{~K}}{T}$
$\Rightarrow E_{a}=\mathrm{R} \times 28000 \mathrm{~K}$
$=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 28000 \mathrm{~K}$
$=232792 \mathrm{~J} \mathrm{~mol}^{-1}$
$=232.792 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4.27 The rate constant for the first order decomposition of $\mathrm{H_2} \mathrm{O_2}$ is given by the following equation: $ \log k=14.34-1.25 \times 10^{4} \mathrm{~K} / T $ Calculate $E_{\mathrm{a}}$ for this reaction and at what temperature will its half-period be 256 minutes?
Show Answer
Answer
Arrhenius equation is given by,
$k=\mathrm{Ae}^{-E_{\alpha} / \mathrm{R} T}$
$\Rightarrow \ln k=\ln \mathrm{A}-\frac{E_{a}}{\mathrm{R} T}$
$\Rightarrow \ln k=\log \mathrm{A}-\frac{E_{a}}{\mathrm{R} T}$
$\Rightarrow \log k=\log \mathrm{A}-\frac{E_{a}}{2.303 \mathrm{R} T} \quad \quad \quad \text{(i)}$
The given equation is
$\log k=14.34-1.25 \times 10^{4} \mathrm{~K} / T\quad \quad \quad \text{(ii)}$
From equation (i) and (ii), we obtain
$\frac{E_{a}}{2.303 \mathrm{R} T}=\frac{1.25 \times 10^{4} \mathrm{~K}}{T}$
$\Rightarrow E_{a}=1.25 \times 10^{4} \mathrm{~K} \times 2.303 \times \mathrm{R}$
$=1.25 \times 10^{4} \mathrm{~K} \times 2.303 \times 8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$=239339.3 \mathrm{~J} \mathrm{~mol} \cdot 1$ (approximately)
$=239.34 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Also, when $t_{1 / 2}=256$ minutes,
$ \begin{aligned} k & =\frac{0.693}{t_{1 / 2}} \\ & =\frac{0.693}{256} \end{aligned} $
$=2.707 \times 10^{-3} \mathrm{~min}^{-1}$
$=4.51 \times 10^{-5} \mathrm{~S}^{-1}$
It is also given that, $\log k=14.34-1.25 \times 10^{4} \mathrm{~K} / T$
$\Rightarrow \log \left(4.51 \times 10^{-5}\right)=14.34-\frac{1.25 \times 10^{4} \mathrm{~K}}{T}$
$\Rightarrow \log (0.654-05)=14.34-\frac{1.25 \times 10^{4} \mathrm{~K}}{T}$
$\Rightarrow \frac{1.25 \times 10^{4} \mathrm{~K}}{T}=18.686$
$\Rightarrow T=\frac{1.25 \times 10^{4} \mathrm{~K}}{18.686}$
$=668.95 \mathrm{~K}$
$=669 \mathrm{~K}$ (approximately)
4.28 The decomposition of A into product has value of $k$ as $4.5 \times 10^{3} \mathrm{~s}^{-1}$ at $10^{\circ} \mathrm{C}$ and energy of activation $60 \mathrm{~kJ} \mathrm{~mol}^{-1}$. At what temperature would $k$ be $1.5 \times 10^{4} \mathrm{~s}^{-1}$ ?
Show Answer
Answer
From Arrhenius equation, we obtain
$\log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 \mathrm{R}}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)$
Also, $k_{1}=4.5 \times 10^{3} \mathrm{~s}^{-1}$
$T_{1}=273+10=283 \mathrm{~K}$
$k_{2}=1.5 \times 10^{4} \mathrm{~s}^{-1}$
$E_{\mathrm{a}}=60 \mathrm{~kJ} \mathrm{~mol}^{-1}=6.0 \times 10^{4} \mathrm{~J} \mathrm{~mol}^{-1}$
Then,
$\log \frac{1.5 \times 10^{4}}{4.5 \times 10^{3}}=\frac{6.0 \times 10^{4} \mathrm{~J} \mathrm{~mol}^{-1}}{2.303 \times 8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\left(\frac{T_{2}-283}{283 T_{2}}\right)$
$\Rightarrow 0.5229=3133.627\left(\frac{T_{2}-283}{283 T_{2}}\right)$
$\Rightarrow \frac{0.5229 \times 283 T_{2}}{3133.627}=T_{2}-283$
$\Rightarrow 0.0472 T_{2}=T_{2}-283$
$\Rightarrow 0.9528 T_{2}=283$
$\Rightarrow T_{2}=297.019 \mathrm{~K}$ (approximately)
$=297 \mathrm{~K}$ $=24^{\circ} \mathrm{C}$
Hence, $k$ would be $1.5 \times 10^{4} \mathrm{~s}^{-1}$ at $24^{\circ} \mathrm{C}$.
Note: There is a slight variation in this answer and the one given in the NCERT textbook.
4.29 The time required for $10 \%$ completion of a first order reaction at $298 \mathrm{~K}$ is equal to that required for its $25 \%$ completion at $308 \mathrm{~K}$. If the value of $A$ is $4 \times 10^{10} \mathrm{~s}^{-1}$. Calculate $k$ at $318 \mathrm{~K}$ and $E_{\mathrm{a}}$.
Show Answer
Answer
For a first order reaction,
$t=\frac{2.303}{k} \log \frac{a}{a-x}$
At $298 \mathrm{~K}, \quad t=\frac{2.303}{k} \log \frac{100}{90}$
$=\frac{0.1054}{k}$
At $308 \mathrm{~K}, \quad t^{\prime}=\frac{2.303}{k^{\prime}} \log \frac{100}{75}$
$=\frac{2.2877}{k^{\prime}}$
According to the question,
$t=t^{\prime}$
$\Rightarrow \frac{0.1054}{k}=\frac{0.2877}{k^{\prime}}$
$\Rightarrow \frac{k^{\prime}}{k}=2.7296$
From Arrhenius equation, we obtain
$$ \begin{aligned} & \log \frac{k^{\prime}}{k}=\frac{E_{a}}{2.303 \mathrm{R}}\left(\frac{T^{\prime}-T}{T T^{\prime}}\right) \\ & \log (2.7296)=\frac{E_{a}}{2.303 \times 8.314}\left(\frac{308-298}{298 \times 308}\right) \\ & E_{a}=\frac{2.303 \times 8.314 \times 298 \times 308 \times \log (2.7296)}{308-298} \\ & \quad=76640.096 \mathrm{~J} \mathrm{~mol}^{-1} \\ & \quad=76.64 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
To calculate $k$ at $318 \mathrm{~K}$,
It is given that, $A=4 \times 10^{10} \mathrm{~s}^{-1}, T=318 \mathrm{~K}$
Again, from Arrhenius equation, we obtain
$$ \begin{aligned} \log k & =\log A-\frac{E_{a}}{2.303 \mathrm{R} T} \\ & =\log \left(4 \times 10^{10}\right)-\frac{76.64 \times 10^{3}}{2.303 \times 8.314 \times 318} \\ & =(0.6021+10)-12.5876 \\ & =-1.9855 \end{aligned} $$
Therefore, $k=\operatorname{Antilog}(-1.9855)$
$$ =1.034 \times 10^{-2} \mathrm{~s}^{-1} $$
4.30 The rate of a reaction quadruples when the temperature changes from $293 \mathrm{~K}$ to $313 \mathrm{~K}$. Calculate the energy of activation of the reaction assuming that it does not change with temperature.
Show Answer
Answer
From Arrhenius equation, we obtain $\log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 \mathrm{R}}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)$
It is given that, $k_{2}=4 k_{1}$
$T_{1}=293 \mathrm{~K}$
$T_{2}=313 \mathrm{~K}$
Therefore, $\log \frac{4 k_{1}}{k_{2}}=\frac{E_{a}}{2.303 \times 8.314}\left(\frac{313-293}{293 \times 313}\right)$
$\Rightarrow 0.6021=\frac{20 \times E_{a}}{2.303 \times 8.314 \times 293 \times 313}$
$\Rightarrow E_{\alpha}=\frac{0.6021 \times 2.303 \times 8.314 \times 293 \times 313}{20}$
$$ =52863.33 \mathrm{~J} \mathrm{~mol}^{-1} $$
$$ =52.86 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
Hence, the required energy of activation is $52.86 \mathrm{kJmol}^{-1}$.