Unit 3 Electrochemistry (Exercises)

Exercises

3.1 Arrange the following metals in the order in which they displace each other from the solution of their salts.

$\mathrm{Al}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mg}$ and $\mathrm{Zn}$.

Show Answer

Answer

The following is the order in which the given metals displace each other from the solution of their salts.

$\mathrm{Mg}, \mathrm{Al}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Cu}$

3.2 Given the standard electrode potentials,

$\mathrm{K}^{+} / \mathrm{K}=-2.93 \mathrm{~V}, \mathrm{Ag}^{+} / \mathrm{Ag}=0.80 \mathrm{~V}$,

$\mathrm{Hg}^{2+} / \mathrm{Hg}=0.79 \mathrm{~V}$

$\mathrm{Mg}^{2+} / \mathrm{Mg}=-2.37 \mathrm{~V}, \mathrm{Cr}^{3+} / \mathrm{Cr}=-0.74 \mathrm{~V}$

Arrange these metals in their increasing order of reducing power.

Show Answer

Answer

The lower the reduction potential, the higher is the reducing power. The given standard electrode potentials increase in the order of $\mathrm{K}^{+} / \mathrm{K}^{2} \mathrm{Mg}^{2+} / \mathrm{Mg}<\mathrm{Cr}^{3+} / \mathrm{Cr}<\mathrm{Hg}^{2+} / \mathrm{Hg}<\mathrm{Ag}^{+} / \mathrm{Ag}$.

Hence, the reducing power of the given metals increases in the following order:

$\mathrm{Ag}<\mathrm{Hg}<\mathrm{Cr}<\mathrm{Mg}<\mathrm{K}$

3.3 Depict the galvanic cell in which the reaction

$\mathrm{Zn}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$ takes place. Further show:

(i) Which of the electrode is negatively charged?

(ii) The carriers of the current in the cell.

(iii) Individual reaction at each electrode.

Show Answer

Answer

The galvanic cell in which the given reaction takes place is depicted as:

$\mathrm{Zn_{(s)}} |\mathrm{Zn_{(a q)}^{2+}} \|\mathrm{Ag_{(a q)}^{+}} | \mathrm{Ag_{(s)}}$

(i) Zn electrode (anode) is negatively charged.

(ii) Ions are carriers of current in the cell and in the external circuit, current will flow from silver to zinc.

(iii) The reaction taking place at the anode is given by,

$\mathrm{Zn_{(s)}} \longrightarrow \mathrm{Zn_{(a q)}^{2+}}+2 \mathrm{e}^{-}$

The reaction taking place at the cathode is given by,

$\mathrm{Ag_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag_{(s)}}$

3.4 Calculate the standard cell potentials of galvanic cell in which the following reactions take place:

(i) $2 \mathrm{Cr}(\mathrm{s})+3 \mathrm{Cd}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{Cd}$

(ii) $\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s})$

Calculate the $\Delta_{\mathrm{r}} G^{\circ}$ and equilibrium constant of the reactions.

Show Answer

Answer

(i) $E_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{\ominus}=0.74 \mathrm{~V}$

$E^{\ominus}{ _\mathrm{Cd}^{2+} / \mathrm{Cd}}=-0.40 \mathrm{~V}$

The galvanic cell of the given reaction is depicted as:

$\mathrm{Cr_{(s)}} |\mathrm{Cr_{(a q)}^{3+}}||\mathrm{Cd_{(a q)}^{2+}}| \mathrm{Cd_{(s)}}$

Now, the standard cell potential is

$$ \begin{aligned} E_{\text {cell }}^{\ominus} & =E_{\mathrm{R}}^{\ominus}-E_{\mathrm{L}}^{\ominus} \\ & =-0.40-(-0.74) \\ & =+0.34 \mathrm{~V} \\ \Delta_{\mathrm{r}} G^{\ominus} & =-n \mathrm{~F} E_{\text {cell }}^{\ominus} \end{aligned} $$

In the given equation, $n=6$

$\mathrm{F}=96487 \mathrm{C} \mathrm{mol}^{-1}$

$E_{\text {cell }}^{\ominus}=+0.34 \mathrm{~V}$

Then, $\Delta_{\mathrm{r}} G^{\ominus}=-6 \times 96487 \mathrm{C} \mathrm{mol}^{-1} \times 0.34 \mathrm{~V}$

$=-196833.48 \mathrm{CV} \mathrm{mol}^{-1}$

$=-196833.48 \mathrm{~J} \mathrm{~mol}^{-1}$

$=-196.83 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Again,

$\Delta_{\mathrm{r}} G^{\ominus}=-\mathrm{R} T \ln K$

$\Rightarrow \Delta_{\mathrm{r}} G^{\ominus}=-2.303 \mathrm{R} T \ln K$

$\Rightarrow \log K=-\frac{\Delta_{\mathrm{r}} G}{2.303 \mathrm{R} T}$

$$ =\frac{-196.83 \times 10^{3}}{2.303 \times 8.314 \times 298} $$

$=34.496$

$\therefore \mathrm{K}=$ antilog (34.496)

$=3.13 \times 10^{34}$

(ii) $E_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\ominus}=0.77 \mathrm{~V}$

$E_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\ominus}=0.80 \mathrm{~V}$

The galvanic cell of the given reaction is depicted as:

$$ \mathrm{Fe_{(a q)}^{2+}} \left|\mathrm{Fe_{(a q)}^{3+}}\right|\left|\mathrm{Ag_{(a q)}^{+}}\right| \mathrm{Ag_{(s)}} $$

Now, the standard cell potential is

$$ \begin{aligned} E_{\text {cell }}^{\ominus} & =E_{\mathrm{R}}^{\ominus}-E_{\mathrm{L}}^{\ominus} \\ & =0.80-0.77 \\ & =0.03 \mathrm{~V} \end{aligned} $$

Here, $n=1$.

Then, $\Delta_{\mathrm{r}} G^{\ominus}=-n \mathrm{~F} E_{\text {cell }}^{\ominus}$

$=-1 \times 96487 \mathrm{C} \mathrm{mol}^{-1} \times 0.03 \mathrm{~V}$

$=-2894.61 \mathrm{~J} \mathrm{~mol}^{-1}$

$=-2.89 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$ \begin{aligned} & \text { Again, } \Delta_{\mathrm{r}} G^{\ominus}=-2.303 \mathrm{R} T \ln K \\ & \Rightarrow \log K=-\frac{\Delta_{\mathrm{r}} G}{2.303 \mathrm{R} T} \\ & \quad=\frac{-2894.61}{2.303 \times 8.314 \times 298} \\ & =0.5073 \\ & \therefore \mathrm{K}=\text { antilog (0.5073) } \\ & =3.2 \text { (approximately) } \end{aligned} $$

3.5 Write the Nernst equation and emf of the following cells at $298 \mathrm{~K}$ :

(i) $\mathrm{Mg}(\mathrm{s})\left|\mathrm{Mg}^{2+}(0.001 \mathrm{M}) \| \mathrm{Cu}^{2+}(0.0001 \mathrm{M})\right| \mathrm{Cu}(\mathrm{s})$

(ii) $\mathrm{Fe}$ (s) $\left|\mathrm{Fe}^{2+}(0.001 \mathrm{M}) \| \mathrm{H}^{+}(1 \mathrm{M})\right| \mathrm{H_2}$ (g) ($1$ bar) $\mid \mathrm{Pt}(\mathrm{s})$

(iii) $\mathrm{Sn}$ (s) $\left|\mathrm{Sn}^{2+}(0.050 \mathrm{M}) \| \mathrm{H}^{+}(0.020 \mathrm{M})\right| \mathrm{H_2}$ (g) (1 bar) $\mid \mathrm{Pt}(\mathrm{s})$

(iv) $\operatorname{Pt}(\mathrm{s})\left|\operatorname{Br}^{-}(0.010 \mathrm{M})\right| \mathrm{Br_2}(1) \| \mathrm{H}^{+}(0.030 \mathrm{M}) \mid \mathrm{H_2}$ (g) (1 bar) $\mid \mathrm{Pt}(\mathrm{s})$.

Show Answer

Answer

(i) For the given reaction, the Nernst equation can be given as:

$$ \begin{aligned} E_{\text {cell }} & =E_{\text {cell }}^{\ominus}-\frac{0.0591}{n} \log \frac{\left[\mathrm{Mg}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \\ & ={0.34-(-2.36)}-\frac{0.0591}{2} \log \frac{.001}{.0001} \\ & =2.7-\frac{0.0591}{2} \log 10 \end{aligned} $$

$=2.7-0.02955$

$=2.67 \mathrm{~V}$ (approximately)

(ii) For the given reaction, the Nernst equation can be given as:

$$ \begin{aligned} & E_{\text {cell }}=E_{\text {cell }}^{\ominus}-\frac{0.0591}{n} \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{H}^{+}\right]^{2}} \\ & \quad={0-(-0.44)}-\frac{0.0591}{2} \log \frac{0.001}{1^{2}} \\ & \quad=0.44-0.02955(-3) \\ & =0.52865 \mathrm{~V} \end{aligned} $$

$=0.53 \mathrm{~V}$ (approximately)

(iii) For the given reaction, the Nernst equation can be given as:

$$ \begin{aligned} E_{\text {cell }} & =E_{\text {cell }}^{\ominus}-\frac{0.0591}{n} \log \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{H}^{+}\right]^{2}} \\ & ={0-(-0.14)}-\frac{0.0591}{2} \log \frac{0.050}{(0.020)^{2}} \end{aligned} $$

$=0.14-0.0295 \times \log 125$

$=0.14-0.062$

$=0.078 \mathrm{~V}$

$=0.08 \mathrm{~V}$ (approximately)

(iv) For the given reaction, the Nernst equation can be given as:

$$ \begin{aligned} E_{\text {cell }} & =E_{\text {cell }}^{\ominus}-\frac{0.0591}{n} \log \frac{1}{\left[\mathrm{Br}^{-}\right]^{2}\left[\mathrm{H}^{+}\right]^{2}} \\ & =(0-1.09)-\frac{0.0591}{2} \log \frac{1}{(0.010)^{2}(0.030)^{2}} \\ & =-1.09-0.02955 \times \log \frac{1}{0.00000009} \\ & =-1.09-0.02955 \times \log \frac{1}{9 \times 10^{-8}} \\ & =-1.09-0.02955 \times \log \left(1.11 \times 10^{7}\right) \\ & =-1.09-0.02955(0.0453+7) \\ & =-1.09-0.208 \\ & =-1.298 \mathrm{~V} \end{aligned} $$

3.6 In the button cells widely used in watches and other devices the following reaction takes place:

$\mathrm{Zn}(\mathrm{s})+\mathrm{Ag_2} \mathrm{O}(\mathrm{s})+\mathrm{H_2} \mathrm{O}(l) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq})$

Determine $\Delta_{r} G^{0}$ and $E^{0}$ for the reaction.

Show Answer

Answer

$$ \begin{array}{rl} \mathrm{Zn_{(s)}}& \longrightarrow \mathrm{Zn_{(a q)}^{2+}}+2 \mathrm{e}^{-} ; E^{\ominus}=0.76 \mathrm{~V} \\ \mathrm{Ag_2} \mathrm{O_{(s)}}+\mathrm{H_2} \mathrm{O_{(b)}}+2 \mathrm{e}^{-}&\longrightarrow 2 \mathrm{Ag_{(s)}}+2 \mathrm{OH_{(a q)}^{-}} ; E^{\ominus}=0.344 \mathrm{~V}\\ \hline \mathrm{Zn_{(s)}}+\mathrm{Ag_2} \mathrm{O_{(s)}}+\mathrm{H_2} \mathrm{O_{(b)}}& \longrightarrow \mathrm{Zn_{(a q)}^{2+}}+2 \mathrm{Ag_{(s)}}+2 \mathrm{OH_{(a q)}^{-}} ; E^{\ominus}=1.104 \mathrm{~V} \end{array} $$

$\therefore E^{\ominus}=1.104 \mathrm{~V}$

We know that,

$ \begin{aligned} & \Delta_{r} G^{\ominus}=-n \mathrm{~F} E^{\ominus} \\ = & -2 \times 96487 \times 1.04 \\ = & -213043.296 \mathrm{~J} \\ = & -213.04 \mathrm{~kJ} \end{aligned} $

3.7 Define conductivity and molar conductivity for the solution of an electrolyte. Discuss their variation with concentration.

Show Answer

Answer

Conductivity of a solution is defined as the conductance of a solution of $1 \mathrm{~cm}$ in length and area of cross-section $1 \mathrm{sq}$. $\mathrm{cm}$. The inverse of resistivity is called conductivity or specific conductance. It is represented by the symbol $\mathring{A}$. If $\mathring{A}$ is resistivity, then we can write:

$$ \kappa=\frac{1}{\rho} $$

The conductivity of a solution at any given concentration is the conductance $(G)$ of one unit volume of solution kept between two platinum electrodes with the unit area of cross-section and at a distance of unit length.

i.e.,

$$ G=\kappa \frac{a}{l}=\kappa \cdot 1=\kappa $$

(Since $a=1, I=1$ )

Conductivity always decreases with a decrease in concentration, both for weak and strong electrolytes. This is because the number of ions per unit volume that carry the current in a solution decreases with a decrease in concentration.

Molar conductivity:

Molar conductivity of a solution at a given concentration is the conductance of volume $\mathrm{V}$ of a solution containing 1 mole of the electrolyte kept between two electrodes with the area of cross-section $A$ and distance of unit length.

$$ \Lambda_{m}=\kappa \frac{A}{l} $$

Now, $I=1$ and $A=V$ (volume containing 1 mole of the electrolyte).

$$ \therefore \Lambda_{m}=\kappa \mathrm{V} $$

Molar conductivity increases with a decrease in concentration. This is because the total volume $V$ of the solution containing one mole of the electrolyte increases on dilution.

The variation of $\Lambda_{m}$ with $\sqrt{c}$ for strong and weak electrolytes is shown in the following plot:

3.8 The conductivity of $0.20 \mathrm{M}$ solution of $\mathrm{KCl}$ at $298 \mathrm{~K}$ is $0.0248 \mathrm{~S} \mathrm{~cm}^{-1}$. Calculate its molar conductivity.

Show Answer

Answer

Given,

$\mathring{A}=0.0248 \mathrm{~S} \mathrm{~cm}^{-1}$

$\mathrm{C}=0.20 \mathrm{M}$

$\therefore$ Molar conductivity,

$$ \Lambda_{m}=\frac{\kappa \times 1000}{\mathrm{c}} $$

$=\frac{0.0248 \times 1000}{0.2}$

$=124 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

3.9 The resistance of a conductivity cell containing $0.001 \mathrm{M} \mathrm{KCl}$ solution at 298 $\mathrm{K}$ is $1500 \Omega$. What is the cell constant if conductivity of $0.001 \mathrm{M} \mathrm{KCl}$ solution at $298 \mathrm{~K}$ is $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$.

Show Answer

Answer

Given,

Conductivity, $\mathring{A}=0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$

Resistance, $R=1500 \mathring{A}$

$\therefore$ Cell constant $=\mathring{A} \times R$

$=0.146 \times 10^{-3} \times 1500$

$=0.219 \mathrm{~cm}^{-1}$

3.10 The conductivity of sodium chloride at $298 \mathrm{~K}$ has been determined at different concentrations and the results are given below:

$\begin{array}{llllll}\text { Concentration/M } & 0.001 & 0.010 & 0.020 & 0.050 & 0.100 \\ 10^{2} \times \mathring{A} / \mathrm{S} \mathrm{m}^{-1} & 1.237 & 11.85 & 23.15 & 55.53 & 106.74\end{array}$

Calculate $\Lambda_{m}$ for all concentrations and draw a plot between $\Lambda_{m}$ and $\mathrm{c}^{1 / 2}$. Find the value of $\Lambda_{m}^{0}$.

Show Answer

Answer

Given,

$\mathring{A}=1.237 \times 10^{-2} \mathrm{~S} \mathrm{~m}^{-1}, \mathrm{c}=0.001 \mathrm{M}$

Then, $\mathring{A}=1.237 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}, \mathrm{c} 1 / 2=0.0316 \mathrm{M}^{1 / 2}$

$\therefore \Lambda_{m}=\frac{\kappa}{c}$

$=\frac{1.237 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}}{0.001 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}$

$=123.7 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Given,

$\mathring{A}=11.85 \times 10^{-2} \mathrm{~S} \mathrm{~m}^{-1}, \mathrm{c}=0.010 \mathrm{M}$

Then, $\mathring{A}=11.85 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}, \mathrm{c}^{1 / 2}=0.1 \mathrm{M}^{1 / 2}$

$\therefore \Lambda_{m}=\frac{\kappa}{c}$

$=\frac{11.85 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}}{0.010 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}$

$=118.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Given,

$\mathring{A}=23.15 \times 10^{-2} \mathrm{~S} \mathrm{~m}^{-1}, \mathrm{c}=0.020 \mathrm{M}$

Then, $\mathring{A}=23.15 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}, \mathrm{c}^{1 / 2}=0.1414 \mathrm{M}^{1 / 2}$

$\therefore \Lambda_{m}=\frac{\kappa}{c}$ $=\frac{23.15 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}}{0.020 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}$

$=115.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Given,

$\mathring{A}=55.53 \times 10^{-2} \mathrm{~S} \mathrm{~m}^{-1}, \mathrm{c}=0.050 \mathrm{M}$

Then, $\mathring{A} = 55.53 \times 10^{-4} \mathrm{S cm^{-1}}, \mathrm{c^{\frac{1}{2}}} = 0.2236 \mathrm{ M^{\frac{1}{2}}}$

$\therefore \kappa=\frac{\kappa}{c}$

$=\frac{55.53 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}}{0.050 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}$

$=111.11 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Given,

$\mathring{A}=106.74 \times 10^{-2} \mathrm{~S} \mathrm{~m}^{-1}, \mathrm{c}=0.100 \mathrm{M}$

Then, $\mathring{A}=106.74 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}, \mathrm{c}^{1 / 2}=0.3162 \mathrm{M}^{1 / 2}$

$\therefore \Lambda_{m}=\frac{\kappa}{c}$

$=\frac{106.74 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}}{0.100 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}$

$=106.74 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Now, we have the following data:

$\mathrm{C}^{1 / 2} / \mathrm{M}^{1 / 2}$ 0.0316 0.1 0.1414 0.2236 0.3162
$\Lambda_{m}\left(\mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)$ 123.7

3.11 Conductivity of $0.00241 \mathrm{M}$ acetic acid is $7.896 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$. Calculate its molar conductivity. If $\Lambda_{m}^{0}$ for acetic acid is $390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, what is its dissociation constant?

Show Answer

Answer

Given, $\mathring{A}=7.896 \times 10^{-5} \mathrm{~S} \mathrm{~m}^{-1}$

$\mathrm{C}=0.00241 \mathrm{~mol} \mathrm{~L}^{-1}$

Then, molar conductivity, $\Lambda_{m}=\frac{\kappa}{\mathrm{c}}$

$=\frac{7.896 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}}{0.00241 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}$

$=32.76 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

Again, $\Lambda_{m}^{0}=390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Now, $\alpha=\frac{\Lambda_{m}}{\Lambda_{m}^{0}}=\frac{32.76 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}}{390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}}$

$=0.084$

$\therefore$ Dissociation constant, $K_{a}=\frac{\mathrm{c} \alpha^{2}}{(1-\alpha)}$

$=\frac{\left(0.00241 \mathrm{~mol} \mathrm{~L}^{-1}\right)(0.084)^{2}}{(1-0.084)}$

$=1.86 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$

3.12 How much charge is required for the following reductions:

(i) $1 \mathrm{~mol}$ of $\mathrm{Al}^{3+}$ to $\mathrm{Al}$ ?

(ii) $1 \mathrm{~mol}$ of $\mathrm{Cu}^{2+}$ to $\mathrm{Cu}$ ?

(iii) $1 \mathrm{~mol}$ of $\mathrm{MnO_4}^{-}$to $\mathrm{Mn}^{2+}$ ?

Show Answer

Answer

(i) $\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}$

$\therefore$ Required charge $=3 \mathrm{~F}$

$=3 \times 96487 \mathrm{C}$

$=289461 \mathrm{C}$

(ii) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}$

$\therefore$ Required charge $=2 \mathrm{~F}$

$=2 \times 96487 \mathrm{C}$

$=192974 \mathrm{C}$

(iii) $\mathrm{MnO_4}^{-} \longrightarrow \mathrm{Mn}^{2+}$

i.e., $\mathrm{Mn}^{7+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}$ $\therefore$ Required charge $=5 \mathrm{~F}$

$=5 \times 96487 \mathrm{C}$

$=482435 \mathrm{C}$

3.13 How much electricity in terms of Faraday is required to produce

(i) $20.0 \mathrm{~g}$ of $\mathrm{Ca}$ from molten $\mathrm{CaCl_2}$ ?

(ii) $40.0 \mathrm{~g}$ of $\mathrm{Al}$ from molten $\mathrm{Al_2} \mathrm{O_3}$ ?

Show Answer

Answer

(i) According to the question,

$$ \mathrm{Ca}^{2+}+2 \mathrm{e}^{-1} \longrightarrow \underset{40 \mathrm{~g}}{\mathrm{Ca}} $$

Electricity required to produce $40 \mathrm{~g}$ of calcium $=2 \mathrm{~F}$

Therefore, electricity required to produce $20 \mathrm{~g}$ of calcium $=\frac{2 \times 20}{40} \mathrm{~F}$

$=1 \mathrm{~F}$

(ii) According to the question,

$$ \mathrm{Al}^{3+}+3 \mathrm{e}^{-} \longrightarrow \underset{27 \mathrm{~g}}{\mathrm{Al}} $$

Electricity required to produce $27 \mathrm{~g}$ of $\mathrm{Al}=3 \mathrm{~F}$

Therefore, electricity required to produce $40 \mathrm{~g}$ of $\mathrm{Al}=\frac{3 \times 40}{27} \mathrm{~F}$

$=4.44 \mathrm{~F}$

3.14 How much electricity is required in coulomb for the oxidation of

(i) $1 \mathrm{~mol}$ of $\mathrm{H_2} \mathrm{O}$ to $\mathrm{O_2}$ ?

(ii) $1 \mathrm{~mol}$ of $\mathrm{FeO}$ to $\mathrm{Fe_2} \mathrm{O_3}$ ?

Show Answer

Answer

(i) According to the question,

$\mathrm{H_2} \mathrm{O} \longrightarrow \mathrm{H_2}+\frac{1}{2} \mathrm{O_2}$

Now, we can write:

$\mathrm{O}^{2-} \longrightarrow \frac{1}{2} \mathrm{O_2}+2 \mathrm{e}^{-}$

Electricity required for the oxidation of $1 \mathrm{~mol}$ of $\mathrm{H_2} \mathrm{O}$ to $\mathrm{O_2}=2 \mathrm{~F}$

$=2 \times 96487 \mathrm{C}$

$=192974 \mathrm{C}$

(ii) According to the question,

$\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-1}$

Electricity required for the oxidation of $1 \mathrm{~mol}$ of $\mathrm{FeO}$ to $\mathrm{Fe_2} \mathrm{O_3}=1 \mathrm{~F}$

$=96487 \mathrm{C}$

3.15 A solution of $\mathrm{Ni}\left(\mathrm{NO_3}\right)_{2}$ is electrolysed between platinum electrodes using a current of 5 amperes for 20 minutes. What mass of $\mathrm{Ni}$ is deposited at the cathode?

Show Answer

Answer

Given,

Current $=5 \mathrm{~A}$

Time $=20 \times 60=1200 \mathrm{~s}$

$\therefore$ Charge $=$ current $\times$ time

$=5 \times 1200$

$=6000 \mathrm{C}$

According to the reaction,

$\mathrm{Ni_{(a q)}^{2+}}+2 \mathrm{e}^{-} \longrightarrow \underset{58.7 \mathrm{~g}}{\mathrm{Ni_{(s)}}}$

Nickel deposited by $2 \times 96487 \mathrm{C}=58.71 \mathrm{~g}$

Therefore, nickel deposited by $6000 \mathrm{C}=\frac{58.71 \times 6000}{2 \times 96487} \mathrm{~g}$

$=1.825 \mathrm{~g}$

Hence, $1.825 \mathrm{~g}$ of nickel will be deposited at the cathode.

3.16 Three electrolytic cells $\mathrm{A}, \mathrm{B}, \mathrm{C}$ containing solutions of $\mathrm{ZnSO_4}, \mathrm{AgNO_3}$ and $\mathrm{CuSO_4}$, respectively are connected in series. A steady current of 1.5 amperes was passed through them until $1.45 \mathrm{~g}$ of silver deposited at the cathode of cell B. How long did the current flow? What mass of copper and zinc were deposited?

Show Answer

Answer

According to the reaction:

$\mathrm{Ag_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \underset{108 \mathrm{~g}}{\mathrm{Ag_{(s)}}}$

i.e., $108 \mathrm{~g}$ of $\mathrm{Ag}$ is deposited by $96487 \mathrm{C}$.

Therefore, $1.45 \mathrm{~g}$ of $\mathrm{Ag}$ is deposited by $=\frac{96487 \times 1.45}{108} \mathrm{C}$

$=1295.43 \mathrm{C}$

Given,

Current $=1.5 \mathrm{~A}$

$\therefore$ Time $=\frac{1295.43}{1.5} \mathrm{~s}$

$=863.6 \mathrm{~s}$

$=864 \mathrm{~s}$

$=14.40 \mathrm{~min}$

Again,

$$ \mathrm{Cu_{(\alpha q)}^{2+}}+2 \mathrm{e}^{-} \longrightarrow \underset{63.5 \mathrm{~g}}{\mathrm{Cu_{(s)}}} $$

i.e., $2 \times 96487 \mathrm{C}$ of charge deposit $=63.5 \mathrm{~g}$ of $\mathrm{Cu}$

Therefore, 1295.43 C of charge will deposit

$$ =\frac{63.5 \times 1295.43}{2 \times 96487} \mathrm{~g} $$

$=0.426 \mathrm{~g}$ of $\mathrm{Cu}$

$$ \begin{array}{r} \mathrm{Zn_{(a q)}^{2+}}+2 \mathrm{e}^{-} \longrightarrow \underset{65.4 \mathrm{~g}}{\mathrm{Zn_{(s)}}} \\ \end{array} $$

i.e., $2 \times 96487 \mathrm{C}$ of charge deposit $=65.4 \mathrm{~g}$ of $\mathrm{Zn}$

Therefore, $1295.43 \mathrm{C}$ of charge will deposit $=\frac{65.4 \times 1295.43}{2 \times 96487} \mathrm{~g}$

$=0.439 \mathrm{~g}$ of $\mathrm{Zn}$

3.17 Using the standard electrode potentials given in Table 3.1, predict if the reaction between the following is feasible:

(i) $\mathrm{Fe}^{3+}$ (aq) and $\mathrm{I}^{-}(\mathrm{aq})$

(ii) $\mathrm{Ag}^{+}$(aq) and $\mathrm{Cu}$ (s)

(iii) $\mathrm{Fe}^{3+}$ (aq) and $\mathrm{Br}^{-}$(aq)

(iv) $\mathrm{Ag}$ (s) and $\mathrm{Fe}^{3+}$ (aq)

(v) $\mathrm{Br_2}$ (aq) and $\mathrm{Fe}^{2+}$ (aq).

Show Answer

Answer

(i)

$$ \begin{array}{clr} [\mathrm{Fe _{(\mathrm{aq})}^{3+}}+\mathrm{e}^{-} \longrightarrow \mathrm{Fe _{(\mathrm{aq})}^{2+}}] \times 2 ; & E^{0}=+0.77 \mathrm{~V} \\ 2 \mathrm{I _{(\mathrm{aq})}^{-}} \longrightarrow \mathrm{I _{2(\mathrm{~s})}}+2 \mathrm{e}^{-} ; & E^{0}=-0.54 \mathrm{~V} \\ \hline 2 \mathrm{Fe _{(\mathrm{aq})}^{3+}}+2 \mathrm{I _{(\mathrm{aq})}^{-}} \longrightarrow 2 \mathrm{Fe _{(\mathrm{aq})}^{2+}}+\mathrm{I _{2(\mathrm{~s})}} ; & E^{0}=+0.23 \mathrm{~V} \end{array} $$

Since $E^{\circ}$ for the overall reaction is positive, the reaction between $\mathrm{Fe_{(a q)}^{3+}} $ and $\mathrm{I_{(a)}^{-}}$ is feasible.

(ii)

$$ \begin{array}{lcl} \mathrm{Ag_{(a q)}^{+}}+\mathrm{e}^{-}& \longrightarrow \left. \mathrm{Ag_{(s)}}\right] \times 2 ; & E^{\circ}=+0.80 \mathrm{~V} \\ \mathrm{Cu_{(s)}}& \longrightarrow \mathrm{Cu_{(a q)}^{2+}}+2 \mathrm{e}^{-} ; & E^{\circ}=-0.34 \mathrm{~V} \\ \hline 2 \mathrm{Ag_{(a q)}^{+}}+\mathrm{Cu_{(s)}}& \longrightarrow 2 \mathrm{Ag_{(s)}}+\mathrm{Cu_{(a q)}^{2+}} ; & E^{\circ}=+0.46 \mathrm{~V} \end{array} $$

Since $E^{\text {o }}$ for the overall reaction is positive, the reaction between $\mathrm{Ag_{(a q)}^{+}}$ and $\mathrm{Cu_{(s)}}$ is feasible.

(iii) $$ \begin{array}{lcl} \mathrm{Fe_{(a q)}^{3+}}+\mathrm{e}^{-} & \longrightarrow \left. \mathrm{Fe_{(a q)}^{2+}}\right] \times 2 ; & E^{0}=+0.77 \mathrm{~V}\\ 2 \mathrm{Br_{(aq)}^{-}} & \longrightarrow \mathrm{Br_{2(l)}}+2 \mathrm{e}^{-} ; & E^{0}=-1.09 \mathrm{~V} \\ \hline 2 \mathrm{Fe_{(\mathrm{aq})}^{3+}}+2 \mathrm{Br_{(\mathrm{aq})}^{-}} & \longrightarrow 2 \mathrm{Fe_{(\mathrm{aq})}^{2+}} \text { and } \mathrm{Br_{2(l)}} ; & E^{\circ}=-0.32 \mathrm{~V} \end{array} $$

Since $E^{0}$ for the overall reaction is negative, the reaction between $\mathrm{Fe_{(a q)}^{3+}}$ and $\mathrm{Br_{(a q)}^{-}}$ is not feasible.

(iv)

$$ \begin{array}{lll} \mathrm{Ag_{(s)}} &\longrightarrow \mathrm{Ag_{(a q)}^{+}}+\mathrm{e}^{-} \quad ; & E^{0}=-0.80 \mathrm{~V} \\ \mathrm{Fe_{(a q)}^{3+}}+\mathrm{e}^{-}& \longrightarrow \mathrm{Fe_{(a q)}^{2+}} \quad ; & E^{0}=+0.77 \mathrm{~V} \\ \hline \mathrm{Ag_{(s)}}+\mathrm{Fe_{(a q)}^{3+}} & \longrightarrow \mathrm{Ag_{(a q)}^{+}}+\mathrm{Fe_{(a q)}^{2+}} \quad ; & E^{0}=-0.03 \mathrm{~V} \end{array} $$

Since $E^{\mathrm{o}} \mathrm{E}$ for the overall reaction is negative, the reaction between $\mathrm{Ag_{(s)}}$ and $\mathrm{Fe_{(a q)}^{3+}}$ is not feasible.

(iv) $$ \begin{array}{lll} \mathrm{Br_{2(a q)}}+2 \mathrm{e}^{-} &\longrightarrow 2 \mathrm{Br_{(aq)}^{-}} \quad ; & E^{0}=+1.09 \mathrm{~V}\\ \mathrm{Fe_{(\mathrm{aq})}^{2+}} &\longrightarrow \left. \mathrm{Fe_{(\mathrm{aq})}^{3+}}+\mathrm{e}^{-}\right] \times 2 ; &E^{0}=-0.77 \mathrm{~V} \\ \hline \mathrm{Br_{2(\mathrm{aq})}}+2 \mathrm{Fe_{(\mathrm{aq})}^{2+}} &\longrightarrow 2 \mathrm{Br_{(\mathrm{aq})}^{-}}+2 \mathrm{Fe_{(\mathrm{aq})}^{3+}} \quad ; & E^{0}=+0.32 \mathrm{~V} \end{array} $$

Since $E^{0}$ for the overall reaction is positive, the reaction between $\mathrm{Br_2(a q)}$ and $\mathrm{Fe}^{2+}{ _(a q)}$ is feasible.

3.18 Predict the products of electrolysis in each of the following:

(i) An aqueous solution of $\mathrm{AgNO_3}$ with silver electrodes.

(ii) An aqueous solution of $\mathrm{AgNO_3}$ with platinum electrodes.

(iii) A dilute solution of $\mathrm{H_2} \mathrm{SO_4}$ with platinum electrodes.

(iv) An aqueous solution of $\mathrm{CuCl_2}$ with platinum electrodes.

Show Answer

Answer

(i) At cathode:

The following reduction reactions compete to take place at the cathode.

$$ \begin{aligned} & \mathrm{Ag_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag_{(s)}} ; E^{0}=0.80 \mathrm{~V} \\ & \mathrm{H_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{H_{2(g)}} ; E^{0}=0.00 \mathrm{~V} \end{aligned} $$

The reaction with a higher value of $E^{0}$ takes place at the cathode. Therefore, deposition of silver will take place at the cathode.

At anode:

The $\mathrm{Ag}$ anode is attacked by $\mathrm{NO_3}^{-}$ions. Therefore, the silver electrode at the anode dissolves in the solution to form $\mathrm{Ag}^{+}$.

(ii) At cathode:

The following reduction reactions compete to take place at the cathode.

$$ \begin{aligned} & \mathrm{Ag_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag_{(s)}} ; E^{0}=0.80 \mathrm{~V} \\ & \mathrm{H_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{H_{2(g)}} ; E^{\circ}=0.00 \mathrm{~V} \end{aligned} $$

The reaction with a higher value of $E^{\circ}$ takes place at the cathode. Therefore, deposition of silver will take place at the cathode.

At anode:

Since Pt electrodes are inert, the anode is not attacked by $\mathrm{NO_3}^{-}$ions. Therefore, $\mathrm{OH}^{-}$or $\mathrm{NO_3}^{-}$ions can be oxidized at the anode. But $\mathrm{OH}$ ’ ions having a lower discharge potential and get preference and decompose to liberate $\mathrm{O_2}$.

$\mathrm{OH}^{-} \longrightarrow \mathrm{OH}+\mathrm{e}^{-}$

$4 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{H_2} \mathrm{O}+\mathrm{O_2}$

(iii) At the cathode, the following reduction reaction occurs to produce $\mathrm{H_2}$ gas.

$\mathrm{H_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{H_{2(g)}}$

At the anode, the following processes are possible.

$$ \begin{align*} & 2 \mathrm{H_2} \mathrm{O_{(l)}} \longrightarrow \mathrm{O_{2(g)}}+4 \mathrm{H_{(a q)}^{+}}+4 \mathrm{e}^{-} ; E^{\circ}=+1.23 \mathrm{~V} \tag{i}\\ & 2 \mathrm{SO_{4(a q)}^{2-}} \longrightarrow \mathrm{S_2} \mathrm{O_{6(a q)}^{2-}}+2 \mathrm{e}^{-} ; E^{\circ}=+1.96 \mathrm{~V} \tag{ii} \end{align*} $$

For dilute sulphuric acid, reaction (i) is preferred to produce $\mathrm{O_2}$ gas. But for concentrated sulphuric acid, reaction (ii) occurs.

(iv) At cathode:

The following reduction reactions compete to take place at the cathode.

$$ \begin{aligned} & \mathrm{Cu_{(a q)}^{2+}}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu_{(s)}} ; E^{0}=0.34 \mathrm{~V} \\ & \mathrm{H_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow 1 / 2 \mathrm{H_{2(g)}} ; E^{0}=0.00 \mathrm{~V} \end{aligned} $$

The reaction with a higher value of $E^{0}$ takes place at the cathode. Therefore, deposition of copper will take place at the cathode.

At anode:

The following oxidation reactions are possible at the anode.

$$ \begin{aligned} & \mathrm{Cl_{(a q)}^{-}} \longrightarrow 1 / 2 \mathrm{Cl_{2(g)}}+\mathrm{e}^{-1} ; E^{\circ}=1.36 \mathrm{~V} \\ & 2 \mathrm{H_2} \mathrm{O_{(l)}} \longrightarrow \mathrm{O_{2(g)}}+4 \mathrm{H_{(a q)}^{+}}+4 \mathrm{e}^{-} ; E^{\circ}=+1.23 \mathrm{~V} \end{aligned} $$

At the anode, the reaction with a lower value of $E^{0}$ is preferred. But due to the over-potential of oxygen, $\mathrm{Cl}^{-}$ gets oxidized at the anode to produce $\mathrm{Cl_2}$ gas.



Table of Contents