Unit 2 Solutions (Intext Questions-3)
Intext Question
2.8 The vapour pressure of pure liquids A and B are 450 and $700 \mathrm{~mm} \mathrm{Hg}$ respectively, at $350 \mathrm{~K}$. Find out the composition of the liquid mixture if total vapour pressure is $600 \mathrm{~mm} \mathrm{Hg}$. Also find the composition of the vapour phase.
Show Answer
Answer
It is given that:
$p_{\mathrm{A}}^{0}=450 \mathrm{~mm}$ of $\mathrm{Hg}$
$p_{\mathrm{B}}^{0}=700 \mathrm{~mm}$ of $\mathrm{Hg}$
$p_{\text {total }}=600 \mathrm{~mm}$ of $\mathrm{Hg}$
From Raoult’s law, we have:
$p_{\mathrm{A}}=p_{\mathrm{A}}^{0} x_{\mathrm{A}}$
$p_{\mathrm{B}}=p_{\mathrm{B}}^{0} x_{\mathrm{B}}=p_{\mathrm{B}}^{0}\left(1-x_{\mathrm{A}}\right)$ Therefore, total pressure, $p_{\text {total }}=p_{\mathrm{A}}+p_{\mathrm{B}}$
$\Rightarrow p_{\text {total }}=p_{\mathrm{A}}^{0} x_{\mathrm{A}}+p_{\mathrm{B}}^{0}\left(1-x_{\mathrm{A}}\right)$
$\Rightarrow p_{\text {total }}=p_{\mathrm{A}}^{0} x_{\mathrm{A}}+p_{\mathrm{B}}^{0}-p_{\mathrm{B}}^{0} x_{\mathrm{A}}$
$\Rightarrow p_{\text {total }}=\left(p_{\mathrm{A}}^{0}-p_{\mathrm{B}}^{0}\right) x_{\mathrm{A}}+p_{\mathrm{B}}^{0}$
$\Rightarrow 600=(450-700) x_{\mathrm{A}}+700$
$\Rightarrow-100=-250 x_{\mathrm{A}}$
$\Rightarrow x_{\mathrm{A}}=0.4$
Therefore, $x_{\mathrm{B}}=1-x_{\mathrm{A}}$
$=1-0.4$
$=0.6$
Now, $p_{\mathrm{A}}=p_{\mathrm{A}}^{0} x_{\mathrm{A}}$
$=450 \times 0.4$
$=180 \mathrm{~mm}$ of $\mathrm{Hg}$
$p_{\mathrm{B}}=p_{\mathrm{B}}^{0} x_{\mathrm{B}}$
$=700 \times 0.6$
$=420 \mathrm{~mm}$ of $\mathrm{Hg}$
Now, in the vapour phase:
Mole fraction of liquid $\mathrm{A}=\frac{p_{\mathrm{A}}}{p_{\mathrm{A}}+p_{\mathrm{B}}}$
$$ \begin{aligned} & =\frac{180}{180+420} \\ & =\frac{180}{600} \\ & =0.30 \end{aligned} $$
And, mole fraction of liquid $B=1-0.30$ $=0.70$