Chapter 08 Introduction to Trigonometry Exercise-02
EXERCISE 8.2
1. Evaluate the following:
(i) $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
(ii) $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
(iii) $\dfrac{\cos 45^{\circ}}{\sec 30^{\circ}+cosec 30^{\circ}}$
(iv) $\dfrac{\sin 30^{\circ}+\tan 45^{\circ}-cosec 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
(v) $\dfrac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$
Show Answer
Solution
(i) $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
$=(\dfrac{\sqrt{3}}{2})(\dfrac{\sqrt{3}}{2})+(\dfrac{1}{2})(\dfrac{1}{2})$
$=\dfrac{3}{4}+\dfrac{1}{4}=\dfrac{4}{4}=1$
(ii) $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
$=2(1)^{2}+(\dfrac{\sqrt{3}}{2})^{2}-(\dfrac{\sqrt{3}}{2})^{2}$
$=2+\dfrac{3}{4}-\dfrac{3}{4}=2$
(iii) $\dfrac{\cos 45^{\circ}}{\sec 30^{\circ}+cosec 30^{\circ}}$
$ \begin{aligned} & =\dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{2}{\sqrt{3}}+2}=\dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{2+2 \sqrt{3}}{\sqrt{3}}} \\ & =\dfrac{\sqrt{3}}{\sqrt{2}(2+2 \sqrt{3})}=\dfrac{\sqrt{3}}{2 \sqrt{2}+2 \sqrt{6}} \\ & =\dfrac{\sqrt{3}(2 \sqrt{6}-2 \sqrt{2})}{(2 \sqrt{6}+2 \sqrt{2})(2 \sqrt{6}-2 \sqrt{2})} \end{aligned} $
$=\dfrac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{(2 \sqrt{6})^{2}-(2 \sqrt{2})^{2}}=\dfrac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{24-8}=\dfrac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{16}$
$=\dfrac{\sqrt{18}-\sqrt{6}}{8}=\dfrac{3 \sqrt{2}-\sqrt{6}}{8}$
$\dfrac{\sin 30^{\circ}+\tan 45^{\circ}-cosec 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
$=\dfrac{\dfrac{1}{2}+1-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}}+\dfrac{1}{2}+1}=\dfrac{\dfrac{3}{2}-\dfrac{2}{\sqrt{3}}}{\dfrac{3}{2}+\dfrac{2}{\sqrt{3}}}$
$=\dfrac{\dfrac{3 \sqrt{3}-4}{2 \sqrt{3}}}{\dfrac{3 \sqrt{3}+4}{2 \sqrt{3}}}=\dfrac{(3 \sqrt{3}-4)}{(3 \sqrt{3}+4)}$
$=\dfrac{(3 \sqrt{3}-4)(3 \sqrt{3}-4)}{(3 \sqrt{3}+4)(3 \sqrt{3}-4)}=\dfrac{(3 \sqrt{3}-4)^{2}}{(3 \sqrt{3})^{2}-(4)^{2}}$
$=\dfrac{27+16-24 \sqrt{3}}{27-16}=\dfrac{43-24 \sqrt{3}}{11}$
(v) $\dfrac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$
$ \begin{aligned} & =\dfrac{5(\dfrac{1}{2})^{2}+4(\dfrac{2}{\sqrt{3}})^{2}-(1)^{2}}{(\dfrac{1}{2})^{2}+(\dfrac{\sqrt{3}}{2})^{2}} \\ & =\dfrac{5(\dfrac{1}{4})+(\dfrac{16}{3})-1}{\dfrac{1}{4}+\dfrac{3}{4}} \\ & =\dfrac{\dfrac{15+64-12}{12}}{\dfrac{4}{4}}=\dfrac{67}{12} \end{aligned} $
2. Choose the correct option and justify your choice :
(i) $\dfrac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$
(A) $\sin 60^{\circ}$
(B) $\cos 60^{\circ}$
(C) $\tan 60^{\circ}$
(D) $\sin 30^{\circ}$
(ii) $\dfrac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$
(A) $\tan 90^{\circ}$
(B) 1
(C) $\sin 45^{\circ}$
(D) 0
(iii) $\sin 2 A=2 \sin A$ is true when $A=$
(A) $0^{\circ}$
(B) $30^{\circ}$
(C) $45^{\circ}$
(D) $60^{\circ}$
(iv) $\dfrac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
(A) $\cos 60^{\circ}$
(B) $\sin 60^{\circ}$
(C) $\tan 60^{\circ}$
(D) $\sin 30^{\circ}$
Show Answer
Solution
(i) $\dfrac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}$
$=\dfrac{2(\dfrac{1}{\sqrt{3}})}{1+(\dfrac{1}{\sqrt{3}})^{2}}=\dfrac{\dfrac{2}{\sqrt{3}}}{1+\dfrac{1}{3}}=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{4}{3}}$
$=\dfrac{6}{4 \sqrt{3}}=\dfrac{\sqrt{3}}{2}$
Out of the given alternatives, only
$ \sin 60^{\circ}=\dfrac{\sqrt{3}}{2} $
Hence, (A) is correct.
(ii) $\dfrac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}$
$=\dfrac{1-(1)^{2}}{1+(1)^{2}}=\dfrac{1-1}{1+1}=\dfrac{0}{2}=0$
Hence, (D) is correct.
(iii)Out of the given alternatives, only $A=0^{\circ}$ is correct.
As $\sin 2 A=\sin 0^{\circ}=0$
$2 \sin A=2 \sin 0^{\circ}=2(0)=0$
Hence, $(A)$ is correct.
(iv) $\dfrac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}$
$=\dfrac{2(\dfrac{1}{\sqrt{3}})}{1-(\dfrac{1}{\sqrt{3}})^{2}}=\dfrac{\dfrac{2}{\sqrt{3}}}{1-\dfrac{1}{3}}=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{2}{3}}$
$=\sqrt{3}$
Out of the given alternatives, only $\tan 60^{\circ}=\sqrt{3}$
Hence, (C) is correct.
3. If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\dfrac{1}{\sqrt{3}} ; 0^{\circ}<A+B \leq 90^{\circ} ; A>B$, find $A$ and $B$.
Show Answer
Solution
$\tan (A+B)=\sqrt{3}$
$\Rightarrow \tan (A+B)=\tan 60$
$\Rightarrow A+B=60 \ldots$ (1)
$\tan (A-B)=\dfrac{1}{\sqrt{3}}$
$\Rightarrow \tan (A-B)=\tan 30$
$\Rightarrow A-B=30$..
On adding both equations, we obtain
$2 A=90$
$\Rightarrow A=45$
From equation (1), we obtain
$45+B=60$
$B=15$
Therefore, $\angle A=45^{\circ}$ and $\angle B=15^{\circ}$
4. State whether the following are true or false. Justify your answer.
(i) $\sin (A+B)=\sin A+\sin B$.
(ii) The value of $\sin \theta$ increases as $\theta$ increases.
(iii) The value of $\cos \theta$ increases as $\theta$ increases.
(iv) $\sin \theta=\cos \theta$ for all values of $\theta$.
(v) $\cot A$ is not defined for $A=0^{\circ}$.
Show Answer
Solution
(i) $\sin (A+B)=\sin A+\sin B$
Let $A=30^{\circ}$ and $B=60^{\circ}$
$\sin (A+B)=\sin (30^{\circ}+60^{\circ})$
$=\sin 90^{\circ}$
$=1$
$\sin A+\sin B=\sin 30^{\circ}+\sin 60^{\circ}$
$=\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}=\dfrac{1+\sqrt{3}}{2}$
Clearly, $\sin (A+B) \neq \sin A+\sin B$
Hence, the given statement is false.
(ii) The value of $\sin \theta$ increases as $\theta$ increases in the interval of $0^{\circ}<\theta<90^{\circ}$ as
$\sin 0^{\circ}=0$
$\sin 30^{\circ}=\dfrac{1}{2}=0.5$
$\sin 45^{\circ}=\dfrac{1}{\sqrt{2}}=0.707$
$\sin 60^{\circ}=\dfrac{\sqrt{3}}{2}=0.866$
$\sin 90^{\circ}=1$
Hence, the given statement is true.
(iii) $\cos 0^{\circ}=1$
$\cos 30^{\circ}=\dfrac{\sqrt{3}}{2}=0.866$
$\cos 45^{\circ}=\dfrac{1}{\sqrt{2}}=0.707$
$\cos 60^{\circ}=\dfrac{1}{2}=0.5$
$\cos 90^{\circ}=0$
It can be observed that the value of $\cos \theta$ does not increase in the interval of $0^{\circ}<\theta<90^{\circ}$.
Hence, the given statement is false.
(iv) $\sin \theta=\cos \theta$ for all values of $\theta$.
This is true when $\theta=45^{\circ}$
$ \begin{aligned} & \sin 45^{\circ}=\dfrac{1}{\sqrt{2}} \\ & \text{ As } \\ & \cos 45^{\circ}=\dfrac{1}{\sqrt{2}} \end{aligned} $
It is not true for all other values of $\theta$.
As $\sin 30^{\circ}=\dfrac{1}{2}$ and $\cos 30^{\circ}=\dfrac{\sqrt{3}}{2}$,
Hence, the given statement is false.
(v) $\cot A$ is not defined for $A=0^{\circ}$
$ \begin{aligned} & \text{ As } \cot A=\dfrac{\cos A}{\sin A} \\ & \cot 0^{\circ}=\dfrac{\cos 0^{\circ}}{\sin 0^{\circ}}=\dfrac{1}{0}=\text{ undefined } \end{aligned} $
Hence, the given statement is true.