Chapter 08 Introduction to Trigonometry Exercise-01
EXERCISE 8.1
1. In $\triangle ABC$, right-angled at $B, AB=24 cm, BC=7 cm$. Determine :
(i) $\sin A, \cos A$
(ii) $\sin C, \cos C$
Show Answer
Solution
Applying Pythagoras theorem for $\triangle A B C$, we obtain
$A C^{2}=A B^{2}+B C^{2}$
$=(24 cm)^{2}+(7 cm)^{2}$
$=(576+49) cm^{2}$
$=625 cm^{2}$
$\therefore AC=\sqrt{625} cm=25 cm$
(i) $\sin A=\dfrac{\text{ Side opposite to } \angle A}{\text{ Hypotenuse }}=\dfrac{BC}{AC}$
$=\dfrac{7}{25}$
$\cos A=$
$\dfrac{\text{ Side adjacent to } \angle A}{\text{ Hypotenuse }}=\dfrac{AB}{AC}=\dfrac{24}{25}$
(ii)
$ \begin{aligned} & \sin C=\dfrac{\text{ Side opposite to } \angle C}{\text{ Hypotenuse }}=\dfrac{AB}{AC} \\ & =\dfrac{24}{25} \end{aligned} $
$ \begin{aligned} & \dfrac{\text{ Side adjacent to } \angle C}{\text{ Hypotenuse }}=\dfrac{BC}{AC} \\ & \cos C= \\ & =\dfrac{7}{25} \end{aligned} $
2. In Fig. 8.13, find tan $P-\cot R$.
Fig. 8.13
Show Answer
Solution
Applying Pythagoras theorem for $\triangle PQR$, we obtain
$PR^{2}=PQ^{2}+QR^{2}$
$(13 cm)^{2}=(12 cm)^{2}+QR^{2}$
$169 cm^{2}=144 cm^{2}+QR^{2}$
$25 cm^{2}=QR^{2}$
$QR=5 cm$
$ \begin{aligned} \tan P & =\dfrac{\text{ Side opposite to } \angle P}{\text{ Side adjacent to } \angle P}=\dfrac{QR}{PQ} \\ & =\dfrac{5}{12} \end{aligned} $
$ \begin{aligned} \cot R & =\dfrac{\text{ Side adjacent to } \angle R}{\text{ Side opposite to } \angle R}=\dfrac{QR}{PQ} \\ & =\dfrac{5}{12} \end{aligned} $
$\tan P-\cot R=\dfrac{5}{12}-\dfrac{5}{12}=0$
3. If $\sin A=\dfrac{3}{4}$, calculate $\cos A$ and $\tan A$.
Show Answer
Solution
Let $\triangle A B C$ be a right-angled triangle, right-angled at point $B$.
Given that,
$ \begin{aligned} & \sin A=\dfrac{3}{4} \\ & \dfrac{BC}{AC}=\dfrac{3}{4} \end{aligned} $
Let $BC$ be $3 k$. Therefore, $AC$ will be $4 k$, where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle A B C$, we obtain
$A C^{2}=A B^{2}+B C^{2}$
$(4 k)^{2}=A B^{2}+(3 k)^{2}$
$16 k^{2}-9 k^{2}=AB^{2}$
$7 k^{2}=A B^{2}$
$AB=\sqrt{7} k$
$\cos A=\dfrac{\text{ Side adjacent to } \angle A}{\text{ Hypotenuse }}$
$=\dfrac{AB}{AC}=\dfrac{\sqrt{7 k}}{4 k}=\dfrac{\sqrt{7}}{4}$
$\tan A=\dfrac{\text{ Side opposite to } \angle A}{\text{ Side adjacent to } \angle A}$
$=\dfrac{BC}{AB}=\dfrac{3 k}{\sqrt{7} k}=\dfrac{3}{\sqrt{7}}$
4. Given $15 \cot A=8$, find $\sin A$ and $\sec A$.
Show Answer
Solution
Consider a right-angled triangle, right-angled at $B$.
$\cot A=\dfrac{\text{ Side adjacent to } \angle A}{\text{ Side opposite to } \angle A}$
$=\dfrac{AB}{BC}$
It is given that,
$ \begin{aligned} \cot A & =\dfrac{8}{15} \\ \dfrac{AB}{BC} & =\dfrac{8}{15} \end{aligned} $
Let $A B$ be $8 k$.Therefore, $B C$ will be $15 k$, where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle A B C$, we obtain
$A C^{2}=A B^{2}+B C^{2}$
$=(8 k)^{2}+(15 k)^{2}$
$=64 k^{2}+225 k^{2}$
$=289 k^{2}$
$AC=17 k$
$ \begin{aligned} \sin A & =\dfrac{\text{ Side opposite to } \angle A}{\text{ Hypotenuse }}=\dfrac{BC}{AC} \\ & =\dfrac{15 k}{17 k}=\dfrac{15}{17} \end{aligned} $
$\sec A=\dfrac{\text{ Hypotenuse }}{\text{ Side adjacent to } \angle A}$
$ =\dfrac{AC}{AB}=\dfrac{17}{8} $
5. Given $\sec \theta=\dfrac{13}{12}$, calculate all other trigonometric ratios.
Show Answer
Solution
Consider a right-angle triangle $\triangle A B C$, right-angled at point $B$.
$\sec \theta=\dfrac{\text{ Hypotenuse }}{\text{ Side adjacent to } \angle \theta}$
$\dfrac{13}{12}=\dfrac{AC}{AB}$
If $AC$ is $13 k, AB$ will be $12 k$, where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle ABC$, we obtain
$(A C)^{2}=(A B)^{2}+(B C)^{2}$
$(13 k)^{2}=(12 k)^{2}+(B C)^{2}$
$169 k^{2}=144 k^{2}+BC^{2}$
$25 k^{2}=BC^{2}$
$BC=5 k$
$\sin \theta=\dfrac{\text{ Side opposite to } \angle \theta}{\text{ Hypotenuse }}=\dfrac{B C}{A C}=\dfrac{5 k}{13 k}=\dfrac{5}{13}$
$\cos \theta=\dfrac{\text{ Side adjacent to } \angle \theta}{\text{ Hypotenuse }}=\dfrac{AB}{AC}=\dfrac{12 k}{13 k}=\dfrac{12}{13}$
$\tan \theta=\dfrac{\text{ Side opposite to } \angle \theta}{\text{ Side adjacent to } \angle \theta}=\dfrac{BC}{AB}=\dfrac{5 k}{12 k}=\dfrac{5}{12}$
$\cot \theta=\dfrac{\text{ Side adjacent to } \angle \theta}{\text{ Side opposite to } \angle \theta}=\dfrac{AB}{BC}=\dfrac{12 k}{5 k}=\dfrac{12}{5}$
$cosec \theta=\dfrac{\text{ Hypotenuse }}{\text{ Side opposite to } \angle \theta}=\dfrac{AC}{BC}=\dfrac{13 k}{5 k}=\dfrac{13}{5}$
6. If $\angle A$ and $\angle B$ are acute angles such that $\cos A=\cos B$, then show that $\angle A=\angle B$.
Show Answer
Solution
Let us consider a triangle $A B C$ in which $C D \perp A B$.
It is given that
$\cos A=\cos B$ $\Rightarrow \dfrac{AD}{AC}=\dfrac{BD}{BC}$
We have to prove $\angle A=\angle B$. To prove this, let us extend $A C$ to $P$ such that $B C=C P$.
From equation (1), we obtain
$\dfrac{AD}{BD}=\dfrac{AC}{BC}$
$\Rightarrow \dfrac{AD}{BD}=\dfrac{AC}{CP}$
(By construction, we have $BC=CP$ )
By using the converse of B.P.T,
$CD \mid BP$
$\Rightarrow \angle ACD=\angle CPB$ (Corresponding angles) ..
And, $\angle BCD=\angle CBP$ (Alternate interior angles)
By construction, we have $BC=CP$.
$\therefore \angle CBP=\angle CPB$ (Angle opposite to equal sides of a triangle) $\ldots$ (5)
From equations (3), (4), and (5), we obtain
$\angle ACD=\angle BCD$.
In $\triangle CAD$ and $\triangle CBD$,
$\angle ACD=\angle BCD$ [Using equation (6)]
$\angle CDA=\angle CDB[.$ Both $90^{\circ}$ ]
Therefore, the remaining angles should be equal.
$\therefore \angle CAD=\angle CBD$
$\Rightarrow \angle A=\angle B$
Alternatively,
Let us consider a triangle $A B C$ in which $C D \perp A B$.
It is given that,
$\cos A=\cos B$
$\Rightarrow \dfrac{AD}{AC}=\dfrac{BD}{BC}$
$\Rightarrow \dfrac{AD}{BD}=\dfrac{AC}{BC}$
Let $\dfrac{AD}{BD}=\dfrac{AC}{BC}=k$
$\Rightarrow AD=k BD$.
And, $AC=k BC$
Using Pythagoras theorem for triangles CAD and CBD, we obtain
$C D^{2}=A C^{2}-A D^{2}$..
And, $CD^{2}=BC^{2}-BD^{2}$.
From equations (3) and (4), we obtain
$A C^{2}-A D^{2}=B C^{2}-B D^{2}$
$\Rightarrow(k B C)^{2}-(k B D)^{2}=BC^{2}-BD^{2}$
$\Rightarrow k^{2}(BC^{2}-BD^{2})=BC^{2}-BD^{2}$
$\Rightarrow k^{2}=1$
$\Rightarrow k=1$
Putting this value in equation (2), we obtain
$AC=BC$
$\Rightarrow \angle A=\angle B$ (Angles opposite to equal sides of a triangle)
7. If $\cot \theta=\dfrac{7}{8}$, evaluate :
(i) $\dfrac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$,
(ii) $\cot ^{2} \theta$
Show Answer
Solution
Let us consider a right triangle $A B C$, right-angled at point $B$.
$ \begin{aligned} \cot \theta & =\dfrac{\text{ Side adjacent to } \angle \theta}{\text{ Side opposite to } \angle \theta}=\dfrac{BC}{AB} \\ & =\dfrac{7}{8} \end{aligned} $
If $BC$ is $7 k$, then $AB$ will be $8 k$, where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle A B C$, we obtain
$A C^{2}=A B^{2}+B C^{2}$
$=(8 k)^{2}+(7 k)^{2}$
$=64 k^{2}+49 k^{2}$
$=113 k^{2}$
$AC=\sqrt{113} k$
$\sin \theta=\dfrac{\text{ Side opposite to } \angle \theta}{\text{ Hypotenuse }}=\dfrac{AB}{AC}$
$=\dfrac{8 k}{\sqrt{113} k}=\dfrac{8}{\sqrt{113}}$
$\cos \theta=\dfrac{\text{ Side adjacent to } \angle \theta}{\text{ Hypotenuse }}=\dfrac{BC}{AC}$
$=\dfrac{7 k}{\sqrt{113} k}=\dfrac{7}{\sqrt{113}}$
(i) $\dfrac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\dfrac{(1-\sin ^{2} \theta)}{(1-\cos ^{2} \theta)}$ $=\dfrac{1-(\dfrac{8}{\sqrt{113}})^{2}}{1-(\dfrac{7}{\sqrt{113}})^{2}}=\dfrac{1-\dfrac{64}{113}}{1-\dfrac{49}{113}}$
$=\dfrac{\dfrac{49}{113}}{64}=\dfrac{49}{64}$
113
(ii) $\cot ^{2} \theta=(\cot \theta)^{2}=(\dfrac{7}{8})^{2}=\dfrac{49}{64}$
8. If $3 \cot A=4$, check whether $\dfrac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ or not.
Show Answer
Solution
It is given that $3 \cot A=4$
Or, $\cot A=\dfrac{4}{3}$
Consider a right triangle $A B C$, right-angled at point $B$.
$\cot A=\dfrac{\text{ Side adjacent to } \angle A}{\text{ Side opposite to } \angle A}$
$\dfrac{AB}{BC}=\dfrac{4}{3}$
If $AB$ is $4 k$, then $BC$ will be $3 k$, where $k$ is a positive integer.
In $\triangle ABC$,
$(A C)^{2}=(A B)^{2}+(B C)^{2}$
$=(4 k)^{2}+(3 k)^{2}$
$ \begin{aligned} & =16 k^{2}+9 k^{2} \\ & =25 k^{2} \\ & A C=5 k \\ & \cos A=\dfrac{\text{ Side adjacent to } \angle A}{\text{ Hypotenuse }}=\dfrac{AB}{AC} \\ & =\dfrac{4 k}{5 k}=\dfrac{4}{5} \\ & \sin A=\dfrac{\text{ Side opposite to } \angle A}{\text{ Hypotenuse }}=\dfrac{BC}{AC} \\ & =\dfrac{3 k}{5 k}=\dfrac{3}{5} \\ & \tan A=\dfrac{\text{ Side opposite to } \angle A}{\text{ Hypotenuse }}=\dfrac{BC}{AB} \\ & =\dfrac{3 k}{4 k}=\dfrac{3}{4} \\ & \dfrac{1-\tan ^{2} A}{1+\tan ^{2} A}=\dfrac{1-(\dfrac{3}{4})^{2}}{1+(\dfrac{3}{4})^{2}}=\dfrac{1-\dfrac{9}{16}}{1+\dfrac{9}{16}} \\ & =\dfrac{\dfrac{7}{16}}{\dfrac{25}{16}}=\dfrac{7}{25} \\ & \cos ^{2} A-\sin ^{2} A=(\dfrac{4}{5})^{2}-(\dfrac{3}{5})^{2} \\ & =\dfrac{16}{25}-\dfrac{9}{25}=\dfrac{7}{25} \\ & \therefore \dfrac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A \end{aligned} $
9. In triangle $A B C$, right-angled at $B$, if $\tan A=\dfrac{1}{\sqrt{3}}$, find the value of:
(i) $\sin A \cos C+\cos A \sin C$
(ii) $\cos A \cos C-\sin A \sin C$
Show Answer
Solution
$\tan A=\dfrac{1}{\sqrt{3}}$
$\dfrac{BC}{AB}=\dfrac{1}{\sqrt{3}}$
If $BC$ is $k$, then $AB$ will be $\sqrt{3} k$, where $k$ is a positive integer.
In $\triangle ABC$,
$A C^{2}=A B^{2}+BC^{2}$
$=(\sqrt{3} k)^{2}+(k)^{2}$
$=3 k^{2}+k^{2}=4 k^{2}$
$\therefore AC=2 k$
$\sin A=\dfrac{\text{ Side opposite to } \angle A}{\text{ Hypotenuse }}=\dfrac{BC}{AC}=\dfrac{k}{2 k}=\dfrac{1}{2}$
$\cos A=\dfrac{\text{ Side adjacent to } \angle A}{\text{ Hypotenuse }}=\dfrac{AB}{AC}=\dfrac{\sqrt{3} k}{2 k}=\dfrac{\sqrt{3}}{2}$
$\sin C=\dfrac{\text{ Side opposite to } \angle C}{\text{ Hypotenuse }}=\dfrac{AB}{AC}=\dfrac{\sqrt{3} k}{2 k}=\dfrac{\sqrt{3}}{2}$
$\cos C=\dfrac{\text{ Side adjacent to } \angle C}{\text{ Hypotenuse }}=\dfrac{BC}{AC}=\dfrac{k}{2 k}=\dfrac{1}{2}$
(i) $\sin A \cos C+\cos A \sin C$
$ \begin{aligned} & =(\dfrac{1}{2})(\dfrac{1}{2})+(\dfrac{\sqrt{3}}{2})(\dfrac{\sqrt{3}}{2})=\dfrac{1}{4}+\dfrac{3}{4} \\ & =\dfrac{4}{4}=1 \end{aligned} $
(ii) $\cos A \cos C-\sin A \sin C$ $=(\dfrac{\sqrt{3}}{2})(\dfrac{1}{2})-(\dfrac{1}{2})(\dfrac{\sqrt{3}}{2})=\dfrac{\sqrt{3}}{4}-\dfrac{\sqrt{3}}{4}=0$
10. In $\Delta PQR$, right- angled at $Q, PR+QR=25 cm$ and $PQ=5 cm$. Determine the values of sin $P, \cos P$ and $\tan P$.
Show Answer
Solution
Given that, $PR+QR=25$
$PQ=5$
Let PR be $x$.
Therefore, $QR=25-x$
Applying Pythagoras theorem in $\triangle PQR$, we obtain
$PR^{2}=PQ^{2}+QR^{2}$
$x^{2}=(5)^{2}+(25-x)^{2}$
$x^{2}=25+625+x^{2}-50 x$
$50 x=650$
$x=13$
Therefore, $PR=13 cm$
$QR=(25-13) cm=12 cm$
$\sin P=\dfrac{\text{ Side opposite to } \angle P}{\text{ Hypotenuse }}=\dfrac{QR}{PR}=\dfrac{12}{13}$
$\cos P=\dfrac{\text{ Side adjacent to } \angle P}{\text{ Hypotenuse }}=\dfrac{PQ}{PR}=\dfrac{5}{13}$
$\tan P=\dfrac{\text{ Side opposite to } \angle P}{\text{ Side adjacent to } \angle P}=\dfrac{QR}{PQ}=\dfrac{12}{5}$
11. State whether the following are true or false. Justify your answer.
(i) The value of $\tan A$ is always less than 1.
(ii) sec $A=\dfrac{12}{5}$ for some value of angle $A$.
(iii) $\cos A$ is the abbreviation used for the cosecant of angle $A$.
(iv) $\cot A$ is the product of cot and $A$.
(v) $\sin \theta=\dfrac{4}{3}$ for some angle $\theta$.
Show Answer
Solution
(i) Consider a $\triangle A B C$, right-angled at $B$.
$\tan A=\dfrac{\text{ Side opposite to } \angle A}{\text{ Side adjacent to } \angle A}$
$=\dfrac{12}{5}$
But $\dfrac{12}{5}>1$
$\therefore \tan A>1$
So, $\tan A<1$ is not always true.
Hence, the given statement is false.
(ii)
$ \sec A=\dfrac{12}{5} $
$\dfrac{\text{ Hypotenuse }}{\text{ Side adjacent to } \angle A}=\dfrac{12}{5}$
$\dfrac{AC}{AB}=\dfrac{12}{5}$
Let $A C$ be $12 k, A B$ will be $5 k$, where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle ABC$, we obtain
$A C^{2}=A B^{2}+B C^{2}$
$(12 k)^{2}=(5 k)^{2}+BC^{2}$
$144 k^{2}=25 k^{2}+BC^{2}$
$BC^{2}=119 k^{2}$
$BC=10.9 k$
It can be observed that for given two sides $AC=12 k$ and $AB=5 k$,
$B C$ should be such that,
$A C-A B<B C<A C+A B$
$12 k-5 k<BC<12 k+5 k$
$7 k<BC<17 k$
However, $BC=10.9 k$. Clearly, such a triangle is possible and hence, such value of sec $A$ is possible.
Hence, the given statement is true.
(iii) Abbreviation used for cosecant of angle $A$ is $cosec A$. And $\cos A$ is the abbreviation used for cosine of angle $A$.
Hence, the given statement is false.
(iv) $\cot A$ is not the product of $\cot$ and $A$. It is the cotangent of $\angle A$.
Hence, the given statement is false.
(v) $\sin \theta=\dfrac{4}{3}$
We know that in a right-angled triangle,
$ \sin \theta=\dfrac{\text{ Side opposite to } \angle \theta}{\text{ Hypotenuse }} $
In a right-angled triangle, hypotenuse is always greater than the remaining two sides. Therefore, such value of $\sin \theta$ is not possible.
Hence, the given statement is false