Chapter 05 Arithmatic Progressions Exercise-03

EXERCISE 5.3

1. Find the sum of the following APs:

(i) $2,7,12, \ldots$, to 10 terms.

(ii) $-37,-33,-29, \ldots$, to 12 terms.

(iii) $0.6,1.7,2.8, \ldots$, to 100 terms.

(iv) $\dfrac{1}{15}, \dfrac{1}{12}, \dfrac{1}{10}, \ldots$, to 11 terms.

Show Answer

Solution

(i) $2,7,12, \ldots$, to 10 terms

For this A.P.,

$a=2$

$d=a_2-a_1=7-2=5$

$n=10$

We know that,

$ \begin{aligned} S_n & =\dfrac{n}{2}[2 a+(n-1) d] \\ S _{10} & =\dfrac{10}{2}[2(2)+(10-1) 5] \\ & =5[4+(9) \times(5)] \\ & =5 \times 49=245 \end{aligned} $

(ii) - $37,-33,-29, \ldots$, to 12 terms

For this A.P.,

$a=-37$

$d=a_2-a_1=(-33)-(-37)$

$=-33+37=4$

$n=12$

We know that,

$ \begin{aligned} S_n & =\dfrac{n}{2}[2 a+(n-1) d] \\ S _{12} & =\dfrac{12}{2}[2(-37)+(12-1) 4] \\ & =6[-74+11 \times 4] \\ & =6[-74+44] \\ & =6(-30)=-180 \end{aligned} $

(iii) $0.6,1.7,2.8, \ldots$, to 100 terms

For this A.P.,

$a=0.6$ $d=a_2-a_1=1.7-0.6=1.1$

$n=100$

We know that,

$ \begin{aligned} S_n= & \dfrac{n}{2}[2 a+(n-1) d] \\ S _{100} & =\dfrac{100}{2}[2(0.6)+(100-1) 1.1] \\ & =50[1.2+(99) \times(1.1)] \\ & =50[1.2+108.9] \\ & =50[110.1] \\ & =5505 \end{aligned} $

(iv) $\dfrac{1}{15}, \dfrac{1}{12}, \dfrac{1}{10}$, to 11 terms

For this A.P.,

$ a=\dfrac{1}{15} $

$ n=11 $

$ \begin{aligned} d=a_2-a_1 & =\dfrac{1}{12}-\dfrac{1}{15} \\ & =\dfrac{5-4}{60}=\dfrac{1}{60} \end{aligned} $

We know that,

$ \begin{aligned} S_n & =\dfrac{n}{2}[2 a+(n-1) d] \\ S _{11} & =\dfrac{11}{2}[2(\dfrac{1}{15})+(11-1) \dfrac{1}{60}] \\ & =\dfrac{11}{2}[\dfrac{2}{15}+\dfrac{10}{60}] \\ & =\dfrac{11}{2}[\dfrac{2}{15}+\dfrac{1}{6}]=\dfrac{11}{2}[\dfrac{4+5}{30}] \\ & =(\dfrac{11}{2})(\dfrac{9}{30})=\dfrac{33}{20} \end{aligned} $

2. Find the sums given below :

(i) $7+10 \dfrac{1}{2}+14+\ldots+84$

(ii) $34+32+30+\ldots+10$

(iii) $-5+(-8)+(-11)+\ldots+(-230)$

Show Answer

Solution

(i) $7+10 \dfrac{1}{2}+14+$ $+84$

For this A.P.,

$a=7$

$I=84$

$d=a_2-a_1=10 \dfrac{1}{2}-7=\dfrac{21}{2}-7=\dfrac{7}{2}$

Let 84 be the $n^{\text{th }}$ term of this A.P.

$I=a+(n-1) d$

$84=7+(n-1) \dfrac{7}{2}$

$77=(n-1) \dfrac{7}{2}$

$22=n-1$

$n=23$

We know that,

$ \begin{aligned} S_n & =\dfrac{n}{2}(a+l) \\ S_n & =\dfrac{23}{2}[7+84] \\ & =\dfrac{23 \times 91}{2}=\dfrac{2093}{2} \\ & =1046 \dfrac{1}{2} \end{aligned} $

(ii) $34+32+30+$ $+10$

For this A.P.,

$a=34$

$d=a_2-a_1=32-34=-2$

$I=10$

Let 10 be the $n^{\text{th }}$ term of this A.P.

$I=a+(n-1) d$

$10=34+(n-1)(-2)$

$-24=(n-1)(-2)$

$12=n-1$

$n=13$

$S_n=\dfrac{n}{2}(a+l)$

$=\dfrac{13}{2}(34+10)$

$=\dfrac{13 \times 44}{2}=13 \times 22$ $=286$

(iii) $(-5)+(-8)+(-11)+$ $+(-230)$

For this A.P.,

$a=-5$

$I=-230$

$d=a_2-a_1=(-8)-(-5)$

$=-8+5=-3$

Let -230 be the $n^{\text{th }}$ term of this A.P.

$I=a+(n-1) d$

$-230=-5+(n-1)(-3)$

$-225=(n-1)(-3)$

$(n-1)=75$

$n=76$

And, $S_n=\dfrac{n}{2}(a+l)$

$ \begin{aligned} & =\dfrac{76}{2}[(-5)+(-230)] \\ & =38(-235) \\ & =-8930 \end{aligned} $

3. In an AP:

(i) given $a=5, d=3, a_n=50$, find $n$ and $S_n$.

(ii) given $a=7, a _{13}=35$, find $d$ and $S _{13}$.

(iii) given $a _{12}=37, d=3$, find $a$ and $S _{12}$.

(iv) given $a_3=15, S _{10}=125$, find $d$ and $a _{10}$.

(v) given $d=5, S_9=75$, find $a$ and $a_9$.

(vi) given $a=2, d=8, S_n=90$, find $n$ and $a_n$.

(vii) given $a=8, a_n=62, S_n=210$, find $n$ and $d$.

(viii) given $a_n=4, d=2, S_n=-14$, find $n$ and $a$.

(ix) given $a=3, n=8, S=192$, find $d$.

(x) given $l=28, S=144$, and there are total 9 terms. Find $a$.

Show Answer

Solution

(i) Given that, $a=5, d=3, a_n=50$

As $a_n=a+(n-1) d$,

$\therefore 50=5+(n-1) 3$

$45=(n-1) 3$

$15=n-1$

$n=16$

$ \begin{aligned} S_n & =\dfrac{n}{2}[a+a_n] \\ S _{16} & =\dfrac{16}{2}[5+50] \\ & =8 \times 55 \\ & =440 \end{aligned} $

(ii) Given that, $a=7, a _{13}=35$

As $a_n=a+(n-1) d$,

$\therefore a _{13}=a+(13-1) d$

$35=7+12 d$

$35-7=12 d$

$28=12 d$

$d=\dfrac{7}{3}$

$S_n=\dfrac{n}{2}[a+a_n]$

$S _{13}=\dfrac{n}{2}[a+a _{13}]$

$=\dfrac{13}{2}[7+35]$

$=\dfrac{13 \times 42}{2}=13 \times 21$

$=273$

(iii)Given that, $a _{12}=37, d=3$

As $a_n=a+(n-1) d$,

$a _{12}=a+(12-1) 3$

$37=a+33$

$a=4$

$S_n=\dfrac{n}{2}[a+a_n]$

$S_n=\dfrac{12}{2}[4+37]$

$S_n=6(41)$

$S_n=246$

(iv) Given that, $a_3=15, S _{10}=125$

As $a_n=a+(n-1) d$,

$a_3=a+(3-1) d$

$15=a+2 d($ i) $S_n=\dfrac{n}{2}[2 a+(n-1) d]$

$S _{10}=\dfrac{10}{2}[2 a+(10-1) d]$

$125=5(2 a+9 d)$

$25=2 a+9 d$

(ii)

On multiplying equation (1) by 2 , we obtain

$30=2 a+4 d$ (iii)

On subtracting equation (iii) from (ii), we obtain

$-5=5 d$

$d=-1$

From equation (i),

$15=a+2(-1)$

$15=a-2$

$a=17$

$a _{10}=a+(10-1) d$

$a _{10}=17+(9)(-1)$

$a _{10}=17-9=8$

(v)Given that, $d=5, S_9=75$

$ _{\text{As }} S_n=\dfrac{n}{2}[2 a+(n-1) d]$,

$S_9=\dfrac{9}{2}[2 a+(9-1) 5]$

$75=\dfrac{9}{2}(2 a+40)$

$25=3(a+20)$

$25=3 a+60$

$3 a=25-60$

$a=\dfrac{-35}{3}$

$a_n=a+(n-1) d$

$a_9=a+(9-1)(5)$ $=\dfrac{-35}{3}+8(5)$

$=\dfrac{-35}{3}+40$

$=\dfrac{-35+120}{3}=\dfrac{85}{3}$

(vi) Given that, $a=2, d=8, S_n=90$

As $S_n=\dfrac{n}{2}[2 a+(n-1) d]$,

$90=\dfrac{n}{2}[4+(n-1) 8]$

$90=n[2+(n-1) 4]$

$90=n[2+4 n-4]$

$90=n(4 n-2)=4 n^{2}-2 n$

$4 n^{2}-2 n-90=0$

$4 n^{2}-20 n+18 n-90=0$

$4 n(n-5)+18(n-5)=0$

$(n-5)(4 n+18)=0$

Either $n-5=0$ or $4 n+18=0$

$n=5$ or $n=-\dfrac{18}{4}=\dfrac{-9}{2}$

However, $n$ can neither be negative nor fractional.

Therefore, $n=5$

4. How many terms of the AP : $9,17,25, \ldots$ must be taken to give a sum of 636 ?

Show Answer

Solution

Let there be $n$ terms of this A.P.

For this A.P., $a=9$

$d=a_2-a_1=17-9=8$ $S_n=\dfrac{n}{2}[2 a+(n-1) d]$

$636=\dfrac{n}{2}[2 \times a+(n-1) 8]$

$636=\dfrac{n}{2}[18+(n-1) 8]$

$636=n[9+4 n-4]$

$636=n(4 n+5)$

$4 n^{2}+5 n-636=0$

$4 n^{2}+53 n-48 n-636=0$

$n(4 n+53)-12(4 n+53)=0$

$(4 n+53)(n-12)=0$

Either $4 n+53=0$ or $n-12=0$

$n=\dfrac{-53}{4}$ or $n=12$

$n$ cannot be $\quad-\dfrac{53}{4}$. As the number of terms can neither be negative nor fractional, therefore, $n=12$ only.

5. The first term of an AP is 5 , the last term is 45 and the sum is 400 . Find the number of terms and the common difference.

Show Answer

Solution

Given that,

$a=5$

$I=45$

$S_n=400$

$S_n=\dfrac{n}{2}(a+l)$

$400=\dfrac{n}{2}(5+45)$

$400=\dfrac{n}{2}(50)$ $n=16$

$I=a+(n-1) d$

$45=5+(16-1) d$

$40=15 d$

$d=\dfrac{40}{15}=\dfrac{8}{3}$

6. The first and the last terms of an $A P$ are 17 and 350 respectively. If the common difference is 9 , how many terms are there and what is their sum?

Show Answer

Solution

Given that,

$a=17$

$I=350$

$d=9$

Let there be $n$ terms in the A.P.

$I=a+(n-1) d$

$350=17+(n-1) 9$

$333=(n-1) 9$

$(n-1)=37$

$n=38$

$S_n=\dfrac{n}{2}(a+l)$

$\Rightarrow S_n=\dfrac{38}{2}(17+350)=19(367)=6973$

Thus, this A.P. contains 38 terms and the sum of the terms of this A.P. is 6973.

7. Find the sum of first 22 terms of an AP in which $d=7$ and 22nd term is 149 .

Show Answer

Solution

$d=7$

$a _{22}=149$

$S _{22}=?$

$a_n=a+(n-1) d$

$a _{22}=a+(22-1) d$

$149=a+21 \times 7$

$149=a+147$

$a=2$

$ \begin{aligned} S_n & =\dfrac{n}{2}(a+a_n) \\ & =\dfrac{22}{2}(2+149) \\ & =11(151)=1661 \end{aligned} $

8. Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.

Show Answer

Solution

Given that,

$a_2=14$

$a_3=18$

$d=a_3-a_2=18-14=4$

$a_2=a+d$

$14=a+4$

$a=10$

$ \begin{aligned} & S_n=\dfrac{n}{2}[2 a+(n-1) d] \\ & S _{51}=\dfrac{51}{2}[2 \times 10+(51-1) 4] \\ &=\dfrac{51}{2}[20+(50)(4)] \\ &=\dfrac{51(220)}{2}=51(110) \\ &=5610 \end{aligned} $

9. If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289 , find the sum of first $n$ terms.

Show Answer

Solution

Given that,

$S_7=49$

$S _{17}=289$

$S_n=\dfrac{n}{2}[2 a+(n-1) d]$

$S_7=\dfrac{7}{2}[2 a+(7-1) d]$

$49=\dfrac{7}{2}(2 a+6 d)$

$7=(a+3 d)$

$a+3 d=7(i)$

Similarly, $S _{17}=\dfrac{17}{2}[2 a+(17-1) d]$

$289=\dfrac{17}{2}[2 a+16 d]$

$17=(a+8 d)$

$a+8 d=17$ (ii)

Subtracting equation (i) from equation (ii),

$5 d=10$ $d=2$

From equation (i),

$a+3(2)=7$

$a+6=7$

$a=1$

$S_n=\dfrac{n}{2}[2 a+(n-1) d]$

$=\dfrac{n}{2}[2(1)+(n-1)(2)]$

$=\dfrac{n}{2}(2+2 n-2)$

$=\dfrac{n}{2}(2 n)$

$=n^{2}$

10. Show that $a_1, a_2, \ldots, a_n, \ldots$ form an AP where $a_n$ is defined as below :

(i) $a_n=3+4 n$

(ii) $a_n=9-5 n$

Also find the sum of the first 15 terms in each case.

Show Answer

Solution

(i) $a_n=3+4 n$

$a_1=3+4(1)=7$

$a_2=3+4(2)=3+8=11$

$a_3=3+4(3)=3+12=15$

$a_4=3+4(4)=3+16=19$

It can be observed that

$a_2-a_1=11-7=4$

$a_3-a_2=15-11=4$

$a_4-a_3=19-15=4$

i.e., $a _{k+1}-a_k$ is same every time. Therefore, this is an AP with common difference as 4 and first term as 7 .

$ \begin{aligned} & S_n=\dfrac{n}{2}[2 a+(n-1) d] \\ & S _{15}=\dfrac{15}{2}[2(7)+(15-1) 4] \\ & =\dfrac{15}{2}[(14)+56] \\ & =\dfrac{15}{2}(70) \\ & =15 \times 35 \\ & =525 \end{aligned} $

It can be observed that

$a_2-a_1=-1-4=-5$

$a_3-a_2=-6-(-1)=-5$

$a_4-a_3=-11-(-6)=-5$

i.e., $a _{k+1}-a_k$ is same every time. Therefore, this is an A.P. with common difference as - 5 and first term as 4.

$ \begin{aligned} & S_n=\dfrac{n}{2}[2 a+(n-1) d] \\ & S _{15}=\dfrac{15}{2}[2(4)+(15-1)(-5)] \\ &=\dfrac{15}{2}[8+14(-5)] \\ &=\dfrac{15}{2}(8-70) \\ &=\dfrac{15}{2}(-62)=15(-31) \\ &=-465 \end{aligned} $

11. If the sum of the first $n$ terms of an AP is $4 n-n^{2}$, what is the first term (that is $S_1$ )? What is the sum of first two terms? What is the second term? Similarly, find the 3rd, the 10th and the $n$th terms.

Show Answer

Solution

Given that,

$S_n=4 n-n^{2}$

First term, $a=S_1=4(1)-(1)^{2}=4-1=3$

Sum of first two terms $=S_2$

$=4(2)-(2)^{2}=8-4=4$

Second term, $a_2=S_2-S_1=4-3=1$

$d=a_2-a=1-3=-2$

$a_n=a+(n-1) d$

$=3+(n-1)(-2)$

$=3-2 n+2$

$=5-2 n$

Therefore, $a_3=5-2(3)=5-6=-1$

$a _{10}=5-2(10)=5-20=-15$

Hence, the sum of first two terms is 4 . The second term is $1.3^{\text{rd }}, 10^{\text{th }}$, and $n^{\text{th }}$ terms are $-1,-15$, and 5 -

$2 n$ respectively.

12. Find the sum of the first 40 positive integers divisible by 6 .

Show Answer

Solution

The positive integers that are divisible by 6 are

$6,12,18,24 \ldots$

It can be observed that these are making an A.P. whose first term is 6 and common difference is 6.

$a=6$

$d=6$

$S _{40}=?$

$ \begin{aligned} & S_n=\dfrac{n}{2}[2 a+(n-1) d] \\ & S _{40}=\dfrac{40}{2}[2(6)+(40-1) 6] \\ & =20[12+(39)(6)] \\ & =20(12+234) \\ & =20 \times 246 \\ & =4920 \end{aligned} $

13. Find the sum of the first 15 multiples of 8.

Show Answer

Solution

The multiples of 8 are

$8,16,24,32 \ldots$

These are in an A.P., having first term as 8 and common difference as 8.

Therefore, $a=8$

$d=8$

$S _{15}=?$

$ \begin{aligned} & S_n=\dfrac{n}{2}[2 a+(n-1) d] \\ &=\dfrac{15}{2}[2(8)+(15-1) 8] \\ &=\dfrac{15}{2}[16+14(8)] \\ &=\dfrac{15}{2}(16+112) \\ &=\dfrac{15(128)}{2}=15 \times 64 \\ &=960 \end{aligned} $

14. Find the sum of the odd numbers between 0 and 50 .

Show Answer

Solution

The odd numbers between 0 and 50 are

$1,3,5,7,9 \ldots 49$

Therefore, it can be observed that these odd numbers are in an A.P.

$a=1$

$d=2$

$I=49$

$I=a+(n-1) d$

$49=1+(n-1) 2$

$48=2(n-1)$

$n-1=24$

$n=25$

$ S_n=\dfrac{n}{2}(a+l) $

$S _{25}=\dfrac{25}{2}(1+49)$

$=\dfrac{25(50)}{2}=(25)(25)$

$=625$

15. A contract on construction job specifies a penalty for delay of completion beyond a certain date as follows: ₹ 200 for the first day, ₹ 250 for the second day, ₹ 300 for the third day, etc., the penalty for each succeeding day being ₹ 50 more than for the preceding day. How much money the contractor has to pay as penalty, if he has delayed the work by 30 days?

Show Answer

Solution

It can be observed that these penalties are in an A.P. having first term as 200 and common difference as 50.

$a=200$

$d=50$

Penalty that has to be paid if he has delayed the work by 30 days $=S _{30}$ $=\dfrac{30}{2}[2(200)+(30-1) 50]$

$=15[400+1450]$

$=15(1850)$

$=27750$

Therefore, the contractor has to pay Rs 27750 as penalty.

16. A sum of ₹ 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is ₹ 20 less than its preceding prize, find the value of each of the prizes.

Show Answer

Solution

Let the cost of $1^{\text{st }}$ prize be $P$.

Cost of $2^{\text{nd }}$ prize $=P-20$

And cost of $3^{\text{rd }}$ prize $=P-40$

It can be observed that the cost of these prizes are in an A.P. having common difference as - 20 and first term as $P$.

$a=P$

$d=-20$

Given that, $S_7=700$

$\dfrac{7}{2}[2 a+(7-1) d]=700$

$\dfrac{[2 a+(6)(-20)]}{2}=100$

$a+3(-20)=100$

a $-60=100$

$a=160$

Therefore, the value of each of the prizes was Rs 160 , Rs 140 , Rs 120 , Rs 100, Rs 80, Rs 60, and Rs 40.

17. In a school, students thought of planting trees in and around the school to reduce air pollution. It was decided that the number of trees, that each section of each class will plant, will be the same as the class, in which they are studying, e.g., a section of Class I will plant 1 tree, a section of Class II will plant 2 trees and so on till Class XII. There are three sections of each class. How many trees will be planted by the students?

Show Answer

Solution

It can be observed that the number of trees planted by the students is in an AP.

$1,2,3,4,5$…. 12

First term, $a=1$

Common difference, $d=2-1=1$

$S_n=\dfrac{n}{2}[2 a+(n-1) d]$

$S _{12}=\dfrac{12}{2}[2(1)+(12-1)(1)]$

$=6(2+11)$

$=6(13)$

$=78$

Therefore, number of trees planted by 1 section of the classes $=78$

Number of trees planted by 3 sections of the classes $=3 \times 78=234$

Therefore, 234 trees will be planted by the students.

18. A spiral is made up of successive semicircles, with centres alternately at A and B, starting with centre at A, of radii $0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, \ldots$ as shown in Fig. 5.4. What is the total length of such a spiral made up of thirteen consecutive semicircles? (Take $\pi=\dfrac{22}{7}$ )

Fig. 5.4

[Hint : Length of successive semicircles is $l_1, l_2, l_3, l_4, \ldots$ with centres at A, B, A, B, …, respectively.]

Show Answer

Solution

Semi-perimeter of circle $=\pi r$

$I_1=\pi(0.5)=\dfrac{\pi}{2} cm$

$I_2=\pi(1)=\pi cm$

$l_3=\pi(1.5)=\dfrac{3 \pi}{2} cm$

Therefore, $l_1, l_2, l_3$, i.e. the lengths of the semi-circles are in an A.P.,

$\dfrac{\pi}{2}, \pi, \dfrac{3 \pi}{2}, 2 \pi, \ldots \ldots \ldots \ldots$

$a=\dfrac{\pi}{2}$

$d=\pi-\dfrac{\pi}{2}=\dfrac{\pi}{2}$

$S _{13}=?$

We know that the sum of $n$ terms of an a A.P. is given by

$ \begin{aligned} S_n & =\dfrac{n}{2}[2 a+(n-1) d] \\ & =\dfrac{13}{2}[2(\dfrac{\pi}{2})+(13-1)(\dfrac{\pi}{2})] \\ & =\dfrac{13}{2}[\pi+\dfrac{12 \pi}{2}] \\ & =(\dfrac{13}{2})(7 \pi) \\ & =\dfrac{91 \pi}{2} \\ & =\dfrac{91 \times 22}{2 \times 7}=13 \times 11 \end{aligned} $

$=143$

Therefore, the length of such spiral of thirteen consecutive semi-circles will be $143 cm$.

Fig. 5.4

[Hint : Length of successive semicircles is $l_1, l_2, l_3, l_4, \ldots$ with centres at A, B, A, B, .., respectively.]

19. 200 logs are stacked in the following manner: 20 logs in the bottom row, 19 in the next row, 18 in the row next to it and so on (see Fig. 5.5). In how many rows are the 200 logs placed and how many logs are in the top row?

Fig. 5.5

Show Answer

Solution

It can be observed that the numbers of logs in rows are in an A.P.

$20,19,18 \ldots$

For this A.P.,

$a=20$

$d=a_2-a_1=19-20=-1$

Let a total of 200 logs be placed in $n$ rows.

$S_n=200$

$S_n=\dfrac{n}{2}[2 a+(n-1) d]$

$200=\dfrac{n}{2}[2(20)+(n-1)(-1)]$

$400=n(40-n+1)$

$400=n(41-n)$

$400=41 n-n^{2}$

$n^{2}-41 n+400=0$

$n^{2}-16 n-25 n+400=0$

$n(n-16)-25(n-16)=0$

$(n-16)(n-25)=0$

Either $(n-16)=0$ or $n-25=0$

$n=16$ or $n=25$

$a_n=a+(n-1) d$

$a _{16}=20+(16-1)(-1)$

$a _{16}=20-15$

$a _{16}=5$

Similarly,

$a _{25}=20+(25-1)(-1)$

$a _{25}=20-24$

$=-4$

Clearly, the number of logs in $16^{\text{th }}$ row is 5 . However, the number of logs in $25^{\text{th }}$ row is negative, which is not possible.

Therefore, 200 logs can be placed in 16 rows and the number of logs in the $16^{\text{th }}$ row is 5 .

20. In a potato race, a bucket is placed at the starting point, which is $5 m$ from the first potato, and the other potatoes are placed $3 m$ apart in a straight line. There are ten potatoes in the line (see Fig. 5.6).

Fig. 5.6

A competitor starts from the bucket, picks up the nearest potato, runs back with it, drops it in the bucket, runs back to pick up the next potato, runs to the bucket to drop it in, and she continues in the same way until all the potatoes are in the bucket. What is the total distance the competitor has to run?

[Hint : To pick up the first potato and the second potato, the total distance (in metres) run by a competitor is $2 \times 5+2 \times(5+3)$ ]

Show Answer

Solution

The distances of potatoes are as follows.

$5,8,11,14 \ldots$

It can be observed that these distances are in A.P.

$a=5$

$d=8-5=3$

$S_n=\dfrac{n}{2}[2 a+(n-1) d]$

$S _{10}=\dfrac{10}{2}[2(5)+(10-1) 3]$ $=5[10+9 \times 3]$

$=5(10+27)=5(37)$

$=185$

As every time she has to run back to the bucket, therefore, the total distance that the competitor has to run will be two times of it.

Therefore, total distance that the competitor will run $=2 \times 185$

$=370 m$

Alternatively,

The distances of potatoes from the bucket are $5,8,11,14 \ldots$

Distance run by the competitor for collecting these potatoes are two times of the distance at which the potatoes have been kept. Therefore, distances to be run are

$10,16,22,28,34, \ldots \ldots \ldots$

$a=10$

$d=16-10=6$

$S _{10}=$ ?

$S _{10}=\dfrac{10}{2}[2 \times 10+(10-1) 6]$

$=5[20+54]$

$=5(74)$

$=370$

Therefore, the competitor will run a total distance of $370 m$.



Table of Contents