Chapter 05 Arithmatic Progressions Exercise-02

EXERCISE 5.2

1. Fill in the blanks in the following table, given that $a$ is the first term, $d$ the common difference and $a_n$ the $n$th term of the AP:

$a$ $d$ $n$ $a_n$
(i) 7 3 8 $\ldots$
(ii) -18 $\ldots$ 10 0
(iii) $\ldots$ -3 18 -5
(iv) -18.9 2.5 $\ldots$ 3.6
(v) 3.5 0 105 $\ldots$
Show Answer

Solution

I. $a=7, d=3, n=8, a_n=$ ?

We know that,

For an A.P. $a_n=a+(n-1) d$

$=7+(8-1) 3$

$=7+(7) 3$

$=7+21=28$

Hence, $a_n=28$

II. Given that

$a=-18, n=10, a_n=0, d=$ ?

We know that,

$a_n=a+(n-1) d$

$0=-18+(10-1) d$

$18=9 d$

$d=\dfrac{18}{9}=2$

Hence, common difference, $d=2$

III. Given that

$d=-3, n=18, a_n=-5$

We know that,

$a_n=a+(n-1) d$

$-5=a+(18-1)(-3)$

$-5=a+(17)(-3)$ $-5=a-51$

$a=51-5=46$

Hence, $a=46$

IV. $a=-18.9, d=2.5, a_n=3.6, n=$ ?

We know that,

$a_n=a+(n-1) d$

$3.6=-18.9+(n-1) 2.5$

$3.6+18.9=(n-1) 2.5$

$22.5=(n-1) 2.5$

$(n-1)=\dfrac{22.5}{2.5}$

$n-1=9$

$n=10$

Hence, $n=10$

V. $a=3.5, d=0, n=105, a_n=$ ?

We know that,

$a_n=a+(n-1) d$

$a_n=3.5+(105-1) 0$

$a_n=3.5+104 \times 0$

$a_n=3.5$

Hence, $a_n=3.5$

2. Choose the correct choice in the following and justify :

(i) 30 th term of the AP: $10,7,4, \ldots$, is

(A) 97

(B) 77

(C) -77

(D) -87

(ii) 11 th term of the AP: $-3,-\dfrac{1}{2}, 2, \ldots$, is

(A) 28

(B) 22

(C) -38

(D) $-48 \dfrac{1}{2}$

Show Answer

Solution

I. Given that

A.P. $10,7,4, \ldots$

First term, $a=10$

Common difference, $d=a_2-a_1=7-10$

$=-3$

We know that, $a_n=a+(n-1) d$

$a _{30}=10+(30-1)(-3)$

$a _{30}=10+(29)(-3)$

$a _{30}=10-87=-77$

Hence, the correct answer is $\mathbf{C}$.

II. Given that, A.P.

$ -3,-\dfrac{1}{2}, 2, \ldots $

First term $a=-3$

Common difference, $d=a_2-a_1$

$=-\dfrac{1}{2}-(-3)$

$=-\dfrac{1}{2}+3=\dfrac{5}{2}$

We know that,

$a_n=a+(n-1) d$

$a _{11}=-3+(11-1)(\dfrac{5}{2})$

$a _{11}=-3+(10)(\dfrac{5}{2})$

$a _{11}=-3+25$

$a _{11}=22$

Hence, the answer is $\mathbf{B}$.

3. In the following APs, find the missing terms in the boxes :

(i) 2 , $\square$, 26

(ii) $\square$, 13, $\square$, 3

(iii) 5, $\square$, $\square$, $9 \dfrac{1}{2}$

(iv) -4 $\square$, $\square$, $\square$, $\square$, 6

(v) $\square$, 38, $\square$, $\square$, $\square$, -22

Show Answer

Solution

I. $2, \square, 26$

For this A.P.,

$a=2$

$a_3=26$

We know that, $a_n=a+(n-1) d$

$a_3=2+(3-1) d$

$26=2+2 d$

$24=2 d$

$d=12$

$a_2=2+(2-1) 12$

$=14$

Therefore, 14 is the missing term.

II. $13, \square, 3$

For this A.P.,

$a_2=13$ and

$a_4=3$

We know that, $a_n=a+(n-1) d$

$a_2=a+(2-1) d$

$13=a+d(1)$

$a_4=a+(4-1) d$

$3=a+3 d$ (II)

On subtracting (I) from (II), we obtain

$-10=2 d$

$d=-5$

From equation (I), we obtain

$13=a+(-5)$

$a=18$

$a_3=18+(3-1)(-5)$

$=18+2(-5)=18-10=8$

Therefore, the missing terms are 18 and 8 respectively.

III.

$5, \square, \square, 9 \dfrac{1}{2}$

For this A.P.,

$a=5$

$a_4=9 \dfrac{1}{2}=\dfrac{19}{2}$

We know that,

$a_n=a+(n-1) d$ $a_4=a+(4-1) d$

$\dfrac{19}{2}=5+3 d$

$\dfrac{19}{2}-5=3 d$

$\dfrac{9}{2}=3 d$

$d=\dfrac{3}{2}$

$a_2=a+d=5+\dfrac{3}{2}=\dfrac{13}{2}$

$a_3=a+2 d=5+2(\dfrac{3}{2})=8$

Therefore, the missing terms are $\dfrac{13}{2}$ and 8 respectively.

IV.

-4 $\square$, $\square$, $\square$, $\square$, 6

For this A.P.,

$a=-4$ and

$a_6=6$

We know that,

$a_n=a+(n-1) d$

$a_6=a+(6-1) d$

$6=-4+5 d$

$10=5 d$

$d=2$

$a_2=a+d=-4+2=-2$ $a_3=a+2 d=-4+2(2)=0$

$a_4=a+3 d=-4+3(2)=2$

$a_5=a+4 d=-4+4(2)=4$

Therefore, the missing terms are $-2,0,2$, and 4 respectively.

v.

$\square$, 38, $\square$, $\square$, $\square$, -22

For this A.P.,

$a_2=38$

$a_6=-22$

We know that

$a_n=a+(n-1) d$

$a_2=a+(2-1) d$

$38=a+d(1)$

$a_6=a+(6-1) d$

$-22=a+5 d(2)$

On subtracting equation (1) from (2), we obtain

$-22-38=4 d$

$-60=4 d$

$d=-15$

$a=a_2-d=38-(-15)=53$

$a_3=a+2 d=53+2(-15)=23$

$a_4=a+3 d=53+3(-15)=8$

$a_5=a+4 d=53+4(-15)=-7$

Therefore, the missing terms are $53,23,8$, and -7 respectively.

4. Which term of the AP: $3,8,13,18, \ldots$,is 78 ?

Show Answer

Solution

$3,8,13,18, \ldots$

For this A.P.,

$a=3$

$d=a_2-a_1=8-3=5$

Let $n^{\text{th }}$ term of this A.P. be 78 . $a_n=a+(n-1) d$

$78=3+(n-1) 5$

$75=(n-1) 5$

$(n-1)=15$

$n=16$

Hence, $16^{\text{th }}$ term of this A.P. is 78.

5. Find the number of terms in each of the following APs :

(i) $7,13,19, \ldots, 205$

(ii) $18,15 \dfrac{1}{2}, 13, \ldots,-47$

Show Answer

Solution

I. $7,13,19, \ldots, 205$

For this A.P.,

$a=7$

$d=a_2-a_1=13-7=6$

Let there are $n$ terms in this A.P.

$a_n=205$

We know that

$a_n=a+(n-1) d$

Therefore, $205=7+(n-1) 6$

$198=(n-1) 6$

$33=(n-1)$

$n=34$

Therefore, this given series has 34 terms in it.

II.

$18,15 \dfrac{1}{2}, 13, \ldots,-47$

For this A.P., $a=18$

$d=a_2-a_1=15 \dfrac{1}{2}-18$

$d=\dfrac{31-36}{2}=-\dfrac{5}{2}$

Let there are $n$ terms in this A.P.

Therefore, $a_n=-47$ and we know that,

$a_n=a+(n-1) d$

$-47=18+(n-1)(-\dfrac{5}{2})$

$-47-18=(n-1)(-\dfrac{5}{2})$

$-65=(n-1)(-\dfrac{5}{2})$

$(n-1)=\dfrac{-130}{-5}$

$(n-1)=26$

$n=27$

Therefore, this given A.P. has 27 terms in it.

6. Check whether -150 is a term of the AP : $11,8,5,2 \ldots$

Show Answer

Solution

For this A.P.,

$a=11$

$d=a_2-a_1=8-11=-3$

Let -150 be the $n^{\text{th }}$ term of this A.P.

We know that, $a_n=a+(n-1) d$

$-150=11+(n-1)(-3)$

$-150=11-3 n+3$

$-164=-3 n$

$n=\dfrac{164}{3}$

Clearly, $n$ is not an integer.

Therefore, - 150 is not a term of this A.P.

7. Find the 31 st term of an AP whose 11 th term is 38 and the 16 th term is 73.

Show Answer

Solution

Given that,

$a _{11}=38$

$a _{16}=73$

We know that,

$a_n=a+(n-1) d$

$a _{11}=a+(11-1) d$

$38=a+10 d(1)$

Similarly,

$a _{16}=a+(16-1) d$

$73=a+15 d(2)$

On subtracting (1) from (2), we obtain

$35=5 d$

$d=7$

From equation (1),

$38=a+10 \times(7)$

$38-70=a$

$a=-32$

$a _{31}=a+(31-1) d$

$=-32+30(7)$

$=-32+210$

$=178$

Hence, $31^{\text{st }}$ term is 178.

8. An AP consists of 50 terms of which 3rd term is 12 and the last term is 106 . Find the 29th term.

Show Answer

Solution

Given that,

$a_3=12$

$a _{50}=106$

We know that,

$a_n=a+(n-1) d$

$a_3=a+(3-1) d$

$12=a+2 d(1)$

Similarly, $a _{50}=a+(50-1) d$

$106=a+49 d$ (II)

On subtracting (I) from (II), we obtain

$94=47 d$

$d=2$

From equation (I), we obtain

$12=a+2(2)$

$a=12-4=8$

$a _{29}=a+(29-1) d$

$a _{29}=8+(28) 2$

$a _{29}=8+56=64$

Therefore, $29^{\text{th }}$ term is 64 .

9. If the 3 rd and the 9 th terms of an $AP$ are 4 and -8 respectively, which term of this $AP$ is zero?

Show Answer

Solution

Given that,

$a_3=4$

$a_9=-8$

We know that,

$a_n=a+(n-1) d$

$a_3=a+(3-1) d$

$4=a+2 d(1)$

$a_9=a+(9-1) d$

$-8=a+8 d$ (II)

On subtracting equation (I) from (II), we obtain

$-12=6 d$

$d=-2$

From equation (I), we obtain

$4=a+2(-2)$

$4=a-4$

$a=8$

Let $n^{\text{th }}$ term of this A.P. be zero.

$a_n=a+(n-1) d$

$0=8+(n-1)(-2)$

$0=8-2 n+2$

$2 n=10$

$n=5$

Hence, $5^{\text{th }}$ term of this A.P. is 0 .

10. The 17th term of an AP exceeds its 10th term by 7. Find the common difference.

Show Answer

Solution

We know that,

For an A.P., $a_n=a+(n-1) d$

$a _{17}=a+(17-1) d$

$a _{17}=a+16 d$

Similarly, $a _{10}=a+9 d$

It is given that

$a _{17}-a _{10}=7$

$(a+16 d)-(a+9 d)=7$

$7 d=7$ $d=1$

Therefore, the common difference is 1 .

11. Which term of the AP : $3,15,27,39, \ldots$ will be 132 more than its 54 th term?

Show Answer

Solution

Given A.P. is $3,15,27,39, \ldots$

$a=3$

$d=a_2-a_1=15-3=12$

$a _{54}=a+(54-1) d$

$=3+(53)(12)$

$=3+636=639$

$132+639=771$

We have to find the term of this A.P. which is 771 .

Let $n^{\text{th }}$ term be 771 .

$a_n=a+(n-1) d$

$771=3+(n-1) 12$

$768=(n-1) 12$

$(n-1)=64$

$n=65$

Therefore, $65^{\text{th }}$ term was 132 more than $54^{\text{th }}$ term.

Alternatively,

Let $n^{\text{th }}$ term be 132 more than $54^{\text{th }}$ term.

$n=54+\dfrac{132}{12}$

$=54+11=65^{\text{th }}$ term

12. Two APs have the same common difference. The difference between their 100th terms is 100 , what is the difference between their 1000th terms?

Show Answer

Solution

Let the first term of these A.P.s be $a_1$ and $a_2$ respectively and the common difference of these A.P.s be $d$.

For first A.P.,

$a _{100}=a_1+(100-1) d$

$=a_1+99 d$

$a _{1000}=a_1+(1000-1) d$

$a _{1000}=a_1+999 d$

For second A.P.,

$a _{100}=a_2+(100-1) d$

$=a_2+99 d$

$a _{1000}=a_2+(1000-1) d$

$=a_2+999 d$

Given that, difference between

$100^{\text{th }}$ term of these A.P.s $=100$

Therefore, $(a_1+99 d)-(a_2+99 d)=100$

$a_1-a_2=100$ (1)

Difference between $1000^{\text{th }}$ terms of these A.P.s

$(a_1+999 d)-(a_2+999 d)=a_1-a_2$

From equation (1),

This difference, $a_1-a_2=100$

Hence, the difference between $1000^{\text{th }}$ terms of these A.P. will be 100 .

13. How many three-digit numbers are divisible by 7 ?

Show Answer

Solution

First three-digit number that is divisible by $7=105$

Next number $=105+7=112$

Therefore, $105,112,119, \ldots$

All are three digit numbers which are divisible by 7 and thus, all these are terms of an A.P. having first term as 105 and common difference as 7 .

The maximum possible three-digit number is 999 . When we divide it by 7 , the remainder will be 5 . Clearly, $999-5=$ 994 is the maximum possible three-digit number that is divisible by 7 .

The series is as follows.

105, 112, 119, …, 994

Let 994 be the $n$th term of this A.P. $a=105$

$d=7$

$a_n=994$

$n=$ ?

$a_n=a+(n-1) d$

$994=105+(n-1) 7$

$889=(n-1) 7$

$(n-1)=127$

$n=128$

Therefore, 128 three-digit numbers are divisible by 7 .

14. How many multiples of 4 lie between 10 and 250 ?

Show Answer

Solution

First multiple of 4 that is greater than 10 is 12 . Next will be 16 .

Therefore, 12, 16, 20, 24, …

All these are divisible by 4 and thus, all these are terms of an A.P. with first term as 12 and common difference as 4 .

When we divide 250 by 4 , the remainder will be 2 . Therefore, $250-2=248$ is divisible by 4 .

The series is as follows.

$12,16,20,24, \ldots, 248$

Let 248 be the $n^{\text{th }}$ term of this A.P.

$a=12$

$d=4$

$a_n=248$

$a_n=a+(n-1) d$

$248=12+(n-1) 4$

$\dfrac{236}{4}=n-1$

$59=n-1$

$n=60$

Therefore, there are 60 multiples of 4 between 10 and 250 .

15. For what value of $n$, are the $n$th terms of two APs: $63,65,67, \ldots$ and $3,10,17, \ldots$ equal?

Show Answer

Solution

$63,65,67, \ldots$

$a=63$

$d=a_2-a_1=65-63=2$

$n^{\text{th }}$ term of this A.P. $=a_n=a+(n-1) d$

$a_n=63+(n-1) 2=63+2 n-2$

$a_n=61+2 n(1)$

$3,10,17, \ldots$

$a=3$

$d=a_2-a_1=10-3=7$

$n^{\text{th }}$ term of this A.P. $=3+(n-1) 7$

$a_n=3+7 n-7$

$a_n=7 n-4(2)$

It is given that, $n^{\text{th }}$ term of these A.P.s are equal to each other.

Equating both these equations, we obtain

$61+2 n=7 n-4$

$61+4=5 n$

$5 n=65$

$n=13$

Therefore, $13^{\text{th }}$ terms of both these A.P.s are equal to each other.

16. Determine the AP whose third term is 16 and the 7 th term exceeds the 5th term by 12 .

Show Answer

Solution

$=a_3=16$

$a+(3-1) d=16$

$a+2 d=16(1)$ $a_7-a_5=12$

$[a+(7-1) d]-[a+(5-1) d]=12$

$(a+6 d)-(a+4 d)=12$

$2 d=12$

$d=6$

From equation (1), we obtain

$a+2(6)=16$

$a+12=16$

$a=4$

Therefore, A.P. will be

$4,10,16,22, \ldots$

17. Find the 20th term from the last term of the AP : 3, 8, 13, …, 253.

Show Answer

Solution

Given A.P. is

$3,8,13, \ldots, 253$

Common difference for this A.P. is 5 .

Therefore, this A.P. can be written in reverse order as

$253,248,243, \ldots, 13,8,5$

For this A.P.,

$a=253$

$d=248-253=-5$

$n=20$

$a _{20}=a+(20-1) d$

$a _{20}=253+(19)(-5)$

$a _{20}=253-95$

$a=158$

Therefore, $20^{\text{th }}$ term from the last term is 158.

18. The sum of the 4 th and 8 th terms of an AP is 24 and the sum of the 6 th and 10 th terms is 44. Find the first three terms of the AP.

Show Answer

Solution

We know that,

$a_n=a+(n-1) d$

$a_4=a+(4-1) d$

$a_4=a+3 d$

Similarly,

$a_8=a+7 d$

$a_6=a+5 d$

$a _{10}=a+9 d$

Given that, $a_4+a_8=24$

$a+3 d+a+7 d=24$

$2 a+10 d=24$

$a+5 d=12(1)$

$a_6+a _{10}=44$

$a+5 d+a+9 d=44$

$2 a+14 d=44$

$a+7 d=22(2)$

On subtracting equation (1) from (2), we obtain

$2 d=22-12$

$2 d=10$

$d=5$

From equation (1), we obtain

$a+5 d=12$

$a+5(5)=12$

$a+25=12$

$a=-13$ $a_2=a+d=-13+5=-8$

$a_3=a_2+d=-8+5=-3$

Therefore, the first three terms of this A.P. are $-13,-8$, and -3 .

19. Subba Rao started work in 1995 at an annual salary of ₹ 5000 and received an increment of ₹ 200 each year. In which year did his income reach ₹ 7000 ?

Show Answer Solution

20. Ramkali saved ₹ 5 in the first week of a year and then increased her weekly savings by ₹ 1.75 . If in the $n$th week, her weekly savings become ₹ 20.75 , find $n$.

Show Answer

Solution

Given that,

$a=5$

$d=1.75$

$a_n=20.75$

$n=?$

$a_n=a+(n-1) d$

$20.75=5+(n-1) 1.75$

$15.75=(n-1) 1.75$

$(n-1)=\dfrac{15.75}{1.75}=\dfrac{1575}{175}$

$=\dfrac{63}{7}=9$

$n-1=9$

$n=10$

Hence, $n$ is 10 .



Table of Contents