Chapter 04 Linear Equations in Two Variables Exercise-01
EXERCISE 4.1
1. The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement.
(Take the cost of a notebook to be ₹ $x$ and that of a pen to be ₹ $y$ ).
Show Answer
Solution
Let the cost of a notebook and a pen be $x$ and $y$ respectively.
Cost of notebook $=2 \times$ Cost of pen $x=2 y x-2 y=0$
2. Express the following linear equations in the form $a x+b y+c=0$ and indicate the values of $a, b$ and $c$ in each case:
(i) $2 x+3 y=9.3 \overline{5}$
(ii) $x-\frac{y}{5}-10=0$
(iii) $-2 x+3 y=6$
(iv) $x=3 y$
(v) $2 x=-5 y$
(vi) $3 x+2=0$
(vii) $y-2=0$
(viii) $5=2 x$
Show Answer
Solution
$ \begin{aligned} & \text { (i) } 2 x+3 y=9.3 \overline{5} \\ & \Rightarrow 2 x+3 y-9.3 \overline{5} \end{aligned} $
Comparing the equation with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
$ a=2, b=3, c=-9.3 \overline{5} $
(ii) $x-\frac{y}{5}-10=0$
Comparing the equation with $a x+b y+c=0$
$ \mathrm{a}=1, \mathrm{~b}=-\frac{1}{5}, \mathrm{c}=-10 $
$ \begin{aligned} & \text { (iii) }-2 \mathrm{x}+3 \mathrm{y}=6 \\ & \Rightarrow-2 \mathrm{x}+3 \mathrm{y}-6=0 \end{aligned} $
Comparing the equation with $a x+b y+c=0$
$ \mathrm{a}=-2, \mathrm{~b}=3, \mathrm{c}=-6 $
(iv) $x=3 y$
$ \Rightarrow \mathrm{x}-3 \mathrm{y}=0 $
Comparing the equation with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
$ \mathrm{a}=1, \mathrm{~b}=-3, \mathrm{c}=0 $
(v) $2 \mathrm{x}=-5 \mathrm{y}$
$ \Rightarrow 2 \mathrm{x}+5 \mathrm{y}=0 $
Comparing the equation with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
$ \mathrm{a}=2, \mathrm{~b}=5, \mathrm{c}=0 $
$ \begin{aligned} & \text { (vi) } 3 x+2=0 \\ & \Rightarrow 3 x+0 y+2=0 \end{aligned} $
Comparing the equation with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
$ \mathrm{a}=3, \mathrm{~b}=0, \mathrm{c}=2 $
(vii) $y-2=0$
$ \Rightarrow 0 \mathrm{x}+\mathrm{y}-2=0 $
Comparing the equation with $a x+b y+c=0$
$ \mathrm{a}=0, \mathrm{~b}=1, \mathrm{c}=-2 $
(viii) $5=2 \mathrm{X}$
$ \Rightarrow-2 \mathrm{x}+0 \mathrm{y}+5 $
Comparing the equation with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
$ \mathrm{a}=-2, \mathrm{~b}=0, \mathrm{c}=5 $