Chapter 02 Polynomials Exercise-04

EXERCISE 2.4

1. Use suitable identities to find the following products:

(i) $(x+4)(x+10)$

(ii) $(x+8)(x-10)$

(iii) $(3 x+4)(3 x-5)$

(iv) $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$

(v) $(3-2 x)(3+2 x)$

Show Answer

Solution

(i) By using the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$, $(x+4)(x+10)=x^{2}+(4+10) x+4 \times 10$

$ =x^{2}+14 x+40 $

(ii) By using the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$,

$ \begin{aligned} (x+8)(x-10) & =x^{2}+(8-10) x+(8)(-10) \\ & =x^{2}-2 x-80 \end{aligned} $

(iii)

$ (3 x+4)(3 x-5)=9(x+\frac{4}{3})(x-\frac{5}{3}) \text{. } $

By using the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$;

$ \begin{aligned} 9(x+\frac{4}{3})(x-\frac{5}{3}) & =9[x^{2}+(\frac{4}{3}-\frac{5}{3}) x+(\frac{4}{3})(-\frac{5}{3})] \\ & =9[x^{2}-\frac{1}{3} x-\frac{20}{9}] \\ & =9 x^{2}-3 x-20 \end{aligned} $

(iv) Bv usina the identitv $(\overline{x+y})(\overline{x-y})=x^{2}-y^{2}$,

$ \begin{aligned} (y^{2}+\frac{3}{2})(y^{2}-\frac{3}{2}) & =(y^{2})^{2}-(\frac{3}{2})^{2} \\ & =y^{4}-\frac{9}{4} \end{aligned} $

(v) By using the identity $(x+y)(x-y)=x^{2}-y^{2}$

$ \begin{aligned} (3-2 x)(3+2 x) & =(3)^{2}-(2 x)^{2} \\ & =9-4 x^{2} \end{aligned} $

2. Evaluate the following products without multiplying directly:

(i) $103 \times 107$

(ii) $95 \times 96$

(iii) $104 \times 96$

Show Answer

Solution

(i) $103 \times 107=(100+3)(100+7)$

$=(100)^{2}+(3+7) 100+(3)(7)$

[By using the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$, where $x=$

$100, a=3$, and $b=7]$

$=10000+1000+21$

$=11021$ (ii) $95 \times 96=(100-5)(100-4)$

$=(100)^{2}+(-5-4) 100+(-5)(-4)$

[By using the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$, where $x=$ $100, a=-5$, and $b=-4]$

$=10000-900+20$

$=9120$

(iii) $104 \times 96=(100+4)(100-4)$

$=(100)^{2}-(4)^{2}[(x+y)(x-y)=x^{2}-y^{2}]$

$=10000-16$

$=9984$

3. Factorise the following using appropriate identities:

(i) $9 x^{2}+6 x y+y^{2}$

(ii) $4 y^{2}-4 y+1$

(iii) $x^{2}-\frac{y^{2}}{100}$

Show Answer

Solution

(i) $9 x^{2}+6 x y+y^{2}=(3 x)^{2}+2(3 x)(y)+(y)^{2}$

$=(3 x+y)(3 x+y) \quad[x^{2}+2 x y+y^{2}=(x+y)^{2}]$

(ii) $4 y^{2}-4 y+1=(2 y)^{2}-2(2 y)(1)+(1)^{2}$

$=(2 y-1)(2 y-1) \quad[x^{2}-2 x y+y^{2}=(x-y)^{2}]$

(iii) $x^{2}-\frac{y^{2}}{100}=x^{2}-(\frac{y}{10})^{2}$

$=(x+\frac{y}{10})(x-\frac{y}{10}) \quad[x^{2}-y^{2}=(x+y)(x-y)]$

4. Expand each of the following, using suitable identities:

(i) $(x+2 y+4 z)^{2}$

(ii) $(2 x-y+z)^{2}$

(iii) $(-2 x+3 y+2 z)^{2}$

(iv) $(3 a-7 b-c)^{2}$

(v) $(-2 x+5 y-3 z)^{2}$

(vi) $\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$

Show Answer

Solution

It is known that,

$ (x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x $

$ \begin{aligned} & \text{ (i) }(x+2 y+4 z)^{2}=x^{2}+(2 y)^{2}+(4 z)^{2}+2(x)(2 y)+2(2 y)(4 z)+2(4 z)(x) \\ & =x^{2}+4 y^{2}+16 z^{2}+4 x y+16 y z+8 x z \\ & \text{ (ii) }(2 x-y+z)^{2}=(2 x)^{2}+(-y)^{2}+(z)^{2}+2(2 x)(-y)+2(-y)(z)+2(z)(2 x) \\ & =4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z \\ & \text{ (iii) }(-2 x+3 y+2 z)^{2} \\ & =(-2 x)^{2}+(3 y)^{2}+(2 z)^{2}+2(-2 x)(3 y)+2(3 y)(2 z)+2(2 z)(-2 x) \\ & =4 x^{2}+9 y^{2}+4 z^{2}-12 x y+12 y z-8 x z \\ & \text{ (iv) }(3 a-7 b-c)^{2} \\ & =(3 a)^{2}+(-7 b)^{2}+(-c)^{2}+2(3 a)(-7 b)+2(-7 b)(-c)+2(-c)(3 a) \\ & =9 a^{2}+49 b^{2}+c^{2}-42 a b+14 b c-6 a c \\ & (-2 x+5 y-3 z)^{2} \\ & \text{ (v) }(-2 x)^{2}+(5 y)^{2}+(-3 z)^{2}+2(-2 x)(5 y)+2(5 y)(-3 z)+2(-3 z)(-2 x) \\ & =4 x^{2}+25 y^{2}+9 z^{2}-20 x y-30 y z+12 x z \\ & {[\frac{1}{4} a-\frac{1}{2} b+1]^{2}} \\ & \text{ (vi) } \\ & =(\frac{1}{4} a)^{2}+(-\frac{1}{2} b)^{2}+(1)^{2}+2(\frac{1}{4} a)(-\frac{1}{2} b)+2(-\frac{1}{2} b)(1)+2(\frac{1}{4} a)(1) \\ & =\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1-\frac{1}{4} a b-b+\frac{1}{2} a \end{aligned} $

5. Factorise:

(i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$

(ii) $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$

Show Answer

Solution

It is known that,

$ \begin{aligned} & (x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x \\ & \text{ (i) } 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \\ & =(2 x)^{2}+(3 y)^{2}+(-4 z)^{2}+2(2 x)(3 y)+2(3 y)(-4 z)+2(2 x)(-4 z) \\ & =(2 x+3 y-4 z)^{2} \\ & =(2 x+3 y-4 z)(2 x+3 y-4 z) \\ & \text{ (ii) } 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \\ & =(-\sqrt{2} x)^{2}+(y)^{2}+(2 \sqrt{2} z)^{2}+2(-\sqrt{2} x)(y)+2(y)(2 \sqrt{2} z)+2(-\sqrt{2} x)(2 \sqrt{2} z) \\ & =(-\sqrt{2} x+y+2 \sqrt{2} z)^{2} \\ & =(-\sqrt{2} x+y+2 \sqrt{2} z)(-\sqrt{2} x+y+2 \sqrt{2} z) \end{aligned} $

6. Write the following cubes in expanded form:

(i) $(2 x+1)^{3}$

(ii) $(2 a-3 b)^{3}$

(iii) $\left[\frac{3}{2} x+1\right]^{3}$

(iv) $\left[x-\frac{2}{3} y\right]^{3}$

Show Answer

Solution

It is known that,

$(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$

and $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$

(i) $(2 x+1)^{3}=(2 x)^{3}+(1)^{3}+3(2 x)(1)(2 x+1)$

$ \begin{aligned} & =8 x^{3}+1+6 x(2 x+1) \\ & =8 x^{3}+1+12 x^{2}+6 x \\ & =8 x^{3}+12 x^{2}+6 x+1 \\ & \text{ (ii) }(2 a-3 b)^{3}=(2 a)^{3}-(3 b)^{3}-3(2 a)(3 b)(2 a-3 b) \\ & =8 a^{3}-27 b^{3}-18 a b(2 a-3 b) \\ & =8 a^{3}-27 b^{3}-36 a^{2} b+54 a b^{2} \\ & \text{ (iii) }[\frac{3}{2} x+1]^{3}=[\frac{3}{2} x]^{3}+(1)^{3}+3(\frac{3}{2} x)(1)(\frac{3}{2} x+1) \\ & =\frac{27}{8} x^{3}+1+\frac{9}{2} x(\frac{3}{2} x+1) \\ & =\frac{27}{8} x^{3}+1+\frac{27}{4} x^{2}+\frac{9}{2} x \\ & =\frac{27}{8} x^{3}+\frac{27}{4} x^{2}+\frac{9}{2} x+1 \\ & \\ & \text{ (vi) }[x-\frac{2}{3} y]^{3}=x^{3}-(\frac{2}{3} y)^{3}-3(x)(\frac{2}{3} y)(x-\frac{2}{3} y) \\ & =x^{3}-\frac{8}{27} y^{3}-2 x y(x-\frac{2}{3} y) \\ & =x^{3}-\frac{8}{27} y^{3}-2 x^{2} y+\frac{4}{3} x y^{2} \end{aligned} $

7. Evaluate the following using suitable identities:

(i) $(99)^{3}$

(ii) $(102)^{3}$

(iii) $(998)^{3}$

Show Answer

Solution

It is known that,

(i) $(99)^{3}=(100-1)^{3}$

$ \begin{aligned} & (a+b)^{3}=a^{3}+b^{3}+3 a b(a+b) \\ & \text{ and }(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b) \end{aligned} $

$ \begin{aligned} & =(100)^{3}-(1)^{3}-3(100)(1)(100-1) \\ & =1000000-1-300(99) \\ & =1000000-1-29700 \\ & =970299 \end{aligned} $

$ \begin{aligned} & \text{ (ii) }(102)^{3}=(100+2)^{3} \\ & =(100)^{3}+(2)^{3}+3(100)(2)(100+2) \\ & =1000000+8+600(102) \\ & =1000000+8+61200=1061208 \\ & \text{ (iii) }(998)^{3}=(1000-2)^{3} \\ & =(1000)^{3}-(2)^{3}-3(1000)(2)(1000-2) \\ & =1000000000-8-6000(998) \\ & =1000000000-8-5988000 \\ & =1000000000-5988008 \\ & =994011992 \text{ Question } \\ & \text{ 8: } \end{aligned} $

8. Factorise each of the following:

(i) $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$

(ii) $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$

(iii) $27-125 a^{3}-135 a+225 a^{2}$

(iv) $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$

(v) $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$

Show Answer

Solution

It is known that, $(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}$

and $(a-b)^{3}=a^{3}-b^{3}-3 a^{2} b+3 a b^{2}$

(i) $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$

$ \begin{aligned} & =(2 a)^{3}+(b)^{3}+3(2 a)^{2} b+3(2 a)(b)^{2} \\ & =(2 a+b)^{3} \\ & =(2 a+b)(2 a+b)(2 a+b) \\ & \text{ (ii) } 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2} \\ & =(2 a)^{3}-(b)^{3}-3(2 a)^{2} b+3(2 a)(b)^{2} \\ & =(2 a-b)^{3} \\ & =(2 a-b)(2 a-b)(2 a-b) \\ & \text{ (iii) } 27-125 a^{3}-135 a+225 a^{2} \\ & =(3)^{3}-(5 a)^{3}-3(3)^{2}(5 a)+3(3)(5 a)^{2} \\ & =(3-5 a)^{3} \\ & =(3-5 a)(3-5 a)(3-5 a) \\ & (\text{ iv) } 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}. \\ & =(4 a)^{3}-(3 b)^{3}-3(4 a)^{2}(3 b)+3(4 a)(3 b)^{2} \\ & =(4 a-3 b)^{3} \\ & =(4 a-3 b)(4 a-3 b)(4 a-3 b) \\ & 27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p \\ & \text{ (v) } \\ & =(3 p)^{3}-(\frac{1}{6})^{3}-3(3 p)^{2}(\frac{1}{6})+3(3 p)(\frac{1}{6})^{2} \\ & =(3 p-\frac{1}{6})^{3} \\ & =(3 p-\frac{1}{6})(3 p-\frac{1}{6})(3 p-\frac{1}{6}) \end{aligned} $

9. Verify : (i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

(ii) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

Show Answer

Solution

(i) It is known that,

$ \begin{aligned} (x+y)^{3} & =x^{3}+y^{3}+3 x y(x+y) \\ x^{3}+y^{3} & =(x+y)^{3}-3 x y(x+y) \\ & =(x+y)[(x+y)^{2}-3 x y] \\ & =(x+y)(x^{2}+y^{2}+2 x y-3 x y) \\ & =(x+y)(x^{2}+y^{2}-x y) \\ & =(x+y)(x^{2}-x y+y^{2}) \end{aligned} $

(ii) It is known that,

$ \begin{aligned} (x-y)^{3} & =x^{3}-y^{3}-3 x y(x-y) \\ x^{3}-y^{3} & =(x-y)^{3}+3 x y(x-y) \\ & =(x-y)[(x-y)^{2}+3 x y] \\ & =(x-y)(x^{2}+y^{2}-2 x y+3 x y) \\ & =(x-y)(x^{2}+y^{2}+x y) \\ & =(x-y)(x^{2}+x y+y^{2}) \end{aligned} $

10. Factorise each of the following:

(i) $27 y^{3}+125 z^{3}$

(ii) $64 m^{3}-343 n^{3}$

[Hint : See Question 9.]

Show Answer

Solution

$ \begin{aligned} & \text{ (i) } 27 y^{3}+125 z^{3} \\ & =(3 y)^{3}+(5 z)^{3} \\ & =(3 y+5 z)[(3 y)^{2}+(5 z)^{2}-(3 y)(5 z)] \quad[\because a^{3}+b^{3}=(a+b)(a^{2}+b^{2}-ab)] \\ & =(3 y+5 z)[9 y^{2}+25 z^{2}-15 y z] \\ & \text{ (ii) } 64 m^{3}-343 n^{3} \\ & =(4 m)^{3}-(7 n)^{3} \\ & =(4 m-7 n)[(4 m)^{2}+(7 n)^{2}+(4 m)(7 n)] \quad[\because a^{3}-b^{3}=(a-b)(a^{2}+b^{2}+ab)] \\ & =(4 m-7 n)[16 m^{2}+49 n^{2}+28 m n] \end{aligned} $

11. Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$

Show Answer

Solution

It is known that,

$ \begin{aligned} & x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)(x^{2}+y^{2}+z^{2}-x y-y z-z x) \\ & \therefore 27 x^{3}+y^{3}+z^{3}-9 x y z \\ & =(3 x)^{3}+(y)^{3}+(z)^{3}-3(3 x)(y)(z) \\ & =(3 x+y+z)[(3 x)^{2}+y^{2}+z^{2}-(3 x)(y)-(y)(z)-z(3 x)] \\ & =(3 x+y+z)[9 x^{2}+y^{2}+z^{2}-3 x y-y z-3 x z] \end{aligned} $

12. Verify that $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$

Show Answer

Solution

It is known that,

$ \begin{aligned} & x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)(x^{2}+y^{2}+z^{2}-x y-y z-z x) \\ = & \frac{1}{2}(x+y+z)[2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x] \\ = & \frac{1}{2}(x+y+z)[(x^{2}+y^{2}-2 x y)+(y^{2}+z^{2}-2 y z)+(x^{2}+z^{2}-2 z x)] \\ = & \frac{1}{2}(x+y+z)[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}] \end{aligned} $

13. If $x+y+z=0$, show that $x^{3}+y^{3}+z^{3}=3 x y z$.

Show Answer

Solution

It is known that,

$ x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)(x^{2}+y^{2}+z^{2}-x y-y z-z x) $

Put $x+y+z=0$,

$ \begin{aligned} & x^{3}+y^{3}+z^{3}-3 x y z=(0)(x^{2}+y^{2}+z^{2}-x y-y z-z x) \\ & x^{3}+y^{3}+z^{3}-3 x y z=0 \\ & x^{3}+y^{3}+z^{3}=3 x y z \end{aligned} $

14. Without actually calculating the cubes, find the value of each of the following:

(i) $(-12)^{3}+(7)^{3}+(5)^{3}$

(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

Show Answer

Solution

(i)

$ (-12)^{3}+(7)^{3}+(5)^{3} $

Let $x=-12, y=7$, and $z=5$

It can be observed that, $x+y$

$+z=-12+7+5=0$

It is known that if $x+y+z=0$, then $x^{3}+y^{3}+z^{3}=3 x y z$

$\therefore \quad(-12)^{3}+(7)^{3}+(5)^{3}=3(-12)(7)(5)$

$=-1260$

(ii)

$ (28)^{3}+(-15)^{3}+(-13)^{3} $

Let $x=28, y=-15$, and $z=-13$

It can be observed that,

$x+y+z=28+(-15)+(-13)=28-28=0$

It is known that if $x+y+z=0$, then

$x^{3}+y^{3}+z^{3}=3 x y z$

$\begin{aligned} \therefore(28)^{3}+(-15)^{3}+(-13)^{3} & =3(28)(-15)(-13) \\ & =16380\end{aligned}$

15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

$$ \text { Area : } 25 a^{2}-35 a+12 $$

$$ \text { Area: } 35 y^{2}+13 y-12 $$

Show Answer

Solution

Area $=$ Length $\times$ Breadth

The expression given for the area of the rectangle has to be factorised. One of its factors will be its length and the other will be its breadth.

$ \begin{aligned} & \text{ (i) } 25 a^{2}-35 a+12=25 a^{2}-15 a-20 a+12 \\ & =5 a(5 a-3)-4(5 a-3) \\ & =(5 a-3)(5 a-4) \end{aligned} $

Therefore, possible length $=5 a-3$

And, possible breadth $=5 a-4$

$ \begin{aligned} & \text{ (ii) } 35 y^{2}+13 y-12=35 y^{2}+28 y-15 y-12 \\ & =7 y(5 y+4)-3(5 y+4) \\ & =(5 y+4)(7 y-3) \end{aligned} $

Therefore, possible length $=5 y+4$

And, possible breadth $=7 y-3$

16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?

(i) $\boxed{\text { Volume :} 3 x^2-12 x}$

(ii) $ \boxed{\text{ Volume : } 12 k y^{2}+6 k y-20 k} $

Show Answer

Solution

Volume of cuboid $=$ Length $\times$ Breadth $\times$ Height

The expression given for the volume of the cuboid has to be factorised. One of its factors will be its length, one will be its breadth, and one will be its height.

(i) $3 x^{2}-12 x=3 x(x-4)$

One of the possible solutions is as follows.

Length $=3$, Breadth $=x$, Height $=x-4$

(ii) $12 k y^{2}+8 k y-20 k=4 k(3 y^{2}+2 y-5)$

$ \begin{aligned} & =4 k[3 y^{2}+5 y-3 y-5] \\ & =4 k[y(3 y+5)-1(3 y+5)] \\ & =4 k(3 y+5)(y-1) \end{aligned} $

One of the possible solutions is as follows.

Length $=4 k$, Breadth $=3 y+5$, Height $=y-1$



Table of Contents