Motion In One Dimension Question 8

Question 8 - 2024 (29 Jan Shift 2)

A particle is moving in a straight line. The variation of position ’ $x$ ’ as a function of time ’ $t$ ’ is given as $x=\left(t^{3}-6 t^{2}+20 t+15\right) m$. The velocity of the body when its acceleration becomes zero is :

(1) $4 m / s$

(2) $8 m / s$

(3) $10 m / s$

(4) $6 m / s$

Show Answer

Answer: (2)

Solution:

$x=t^{3}-6 t^{2}+20 t+15$

$\frac{d x}{d t}=v=3 t^{2}-12 t+20$

$\frac{d v}{d t}=a=6 t-12$

When $a=0$

$6 t-12=0 ; t=2 sec$

At $t=2 sec$

$v=3(2)^{2}-12(2)+20$

$v=8 m / s$