Electrostatics Question 14

Question 14 - 2024 (30 Jan Shift 2)

A particle of charge ’ $-q$ ’ and mass ’ $m$ ’ moves in a circle of radius ’ $r$ ’ around an infinitely long line charge of linear density ’ $+\lambda$ ‘. Then time period will be given as:

(Consider $k$ as Coulomb’s constant)

(1) $T^{2}=\frac{4 \pi^{2} m}{2 k \lambda q} r^{3}$

(2) $T=2 \pi r \sqrt{\frac{m}{2 k \lambda q}}$

(3) $T=\frac{1}{2 \pi r} \sqrt{\frac{m}{2 k \lambda q}}$

(4) $T=\frac{1}{2 \pi} \sqrt{\frac{2 k \lambda q}{m}}$

Show Answer

Answer: (2)

$\frac{2 k \lambda q}{r}=m \omega^{2} r$

$\omega^{2}=\frac{2 k \lambda q}{mr^{2}}$

$\left(\frac{2 \pi}{T}\right)^{2}=\frac{2 k \lambda q}{mr^{2}}$

$T=2 \pi r \sqrt{\frac{m}{2 k \lambda q}}$