Vector Algebra Question 4

Question 4 - 2024 (27 Jan Shift 1)

Let $\vec{a}=\hat{i}+2 \hat{j}+k, \vec{b}=3(\hat{i}-\hat{j}+k)$. Let $\vec{c}$ be the vector such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$. Then $\vec{a} \cdot((\vec{c} \times \vec{b})-\vec{b}-\vec{c})$ is equal to :

(1) 32

(2) 24

(3) 20

(4) 36

Show Answer

Answer (2)

Solution

$\vec{a} \cdot[(\vec{c} \times \vec{b})-\vec{b}-\vec{c}]$

$\vec{a} \cdot(\vec{c} \times \vec{b})-\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c}$

given $\overrightarrow{a} \times \overrightarrow{c}=\overrightarrow{b}$

$\Rightarrow(\overrightarrow{a} \times \overrightarrow{c}) \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{b}=|\overrightarrow{b}|^{2}=27$

$\Rightarrow \vec{a} \cdot(\vec{c} \times \vec{b})=\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{b}\end{array}\right]=(\vec{a} \times \vec{c}) \cdot \vec{b}=27 \ldots$ (ii)

Now $\vec{a} \cdot \vec{b}=3-6+3=0$

$\overrightarrow{a} \cdot \overrightarrow{c}=3$…(iv)(given)

By (i), (ii), (iii) & (iv)

$27-0-3=24$