Vector Algebra Question 2

Question 2 - 2024 (01 Feb Shift 2)

Consider a $\triangle ABC$ where $A(1,2,3), B(-2,8,0)$ and $C(3,6,7)$. If the angle bisector of $\angle BAC$ meets the line $BC$ at $D$, then the length of the projection of the vector $\overrightarrow{A D}$ on the vector $\overrightarrow{A C}$ is:

(1) $\frac{37}{2 \sqrt{38}}$

(2) $\frac{\sqrt{38}}{2}$

(3) $\frac{39}{2 \sqrt{38}}$

(4) $\sqrt{19}$

Show Answer

Answer (1)

Solution

B

$D$

C $(3,6,7)$

$(-2,8,0)$

$$ \left(\frac{1}{2}, 7, \frac{7}{2}\right) $$

$A(1,3,2) ; B(-2,8,0) ; C(3,6,7)$;

$\overrightarrow{AC}=2 \hat{i}+3 \hat{j}+5 \hat{k}$

$AB=\sqrt{9+25+4}=\sqrt{38}$

$AC=\sqrt{4+9-25}=\sqrt{38}$

$\overrightarrow{AD}=\frac{1}{2} \hat{i}-4 \hat{j}-\frac{3}{2} \hat{k}=\frac{1}{2}(\hat{i}-8 \hat{j}-3 \hat{k})$

Length of projection of $\overrightarrow{AD}$ on $\overrightarrow{AC}$

$=\left|\frac{\overrightarrow{AD} \cdot \overrightarrow{AC}}{|\overrightarrow{AC}|}\right|=\frac{37}{2 \sqrt{38}}$