Trigonometric Equations Question 4

Question 4 - 2024 (29 Jan Shift 1)

If $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ is the solution of $4 \cos \theta+5 \sin \theta=1$, then the value of $\tan \alpha$ is

(1) $\frac{10-\sqrt{10}}{6}$

(2) $\frac{10-\sqrt{10}}{12}$

(3) $\frac{\sqrt{10}-10}{12}$

(4) $\frac{\sqrt{10}-10}{6}$

Show Answer

Answer (3)

Solution

$4+5 \tan \theta=\sec \theta$

Squaring : $24 \tan ^{2} \theta+40 \tan \theta+15=0$

$\tan \theta=\frac{-10 \pm \sqrt{10}}{12}$

and $\tan \theta=-\left(\frac{10+\sqrt{10}}{12}\right)$ is Rejected.

(3) is correct.