Three Dimensional Geometry Question 9
Question 9 - 2024 (27 Jan Shift 2)
Let the position vectors of the vertices $A, B$ and $C$ of a triangle be $2 \hat{i}+2 \hat{j}+\hat{k},{ }^{\prime}+2 \hat{j}+2 \hat{k}$ and $2 \hat{i}+\hat{j}+2 \hat{k}$ respectively. Let $l _1, l _2$ and $l _3$ be the lengths of perpendiculars drawn from the ortho center of the triangle on the sides $AB, BC$ and $CA$ respectively, then $l _1^{2}+l _2^{2}+l _3^{2}$ equals:
(1) $\frac{1}{5}$
(2) $\frac{1}{2}$
(3) $\frac{1}{4}$
(4) $\frac{1}{3}$
Show Answer
Answer (2)
Solution
$\triangle ABC$ is equilateral
Orthocentre and centroid will be same
$G\left(\frac{5}{3}, \frac{5}{3}, \frac{5}{3}\right)$
Mid-point of AB is D $\left(\frac{3}{2}, 2, \frac{3}{2}\right)$
$\therefore \ell _1=\sqrt{\frac{1}{36}+\frac{1}{9}+\frac{1}{36}}$
$\ell _1=\sqrt{\frac{1}{6}}=\ell _2=\ell _3$
$\therefore \ell _1^{2}+\ell _2^{2}+\ell _3^{2}=\frac{1}{2}$