Three Dimensional Geometry Question 9

Question 9 - 2024 (27 Jan Shift 2)

Let the position vectors of the vertices $A, B$ and $C$ of a triangle be $2 \hat{i}+2 \hat{j}+\hat{k},{ }^{\prime}+2 \hat{j}+2 \hat{k}$ and $2 \hat{i}+\hat{j}+2 \hat{k}$ respectively. Let $l _1, l _2$ and $l _3$ be the lengths of perpendiculars drawn from the ortho center of the triangle on the sides $AB, BC$ and $CA$ respectively, then $l _1^{2}+l _2^{2}+l _3^{2}$ equals:

(1) $\frac{1}{5}$

(2) $\frac{1}{2}$

(3) $\frac{1}{4}$

(4) $\frac{1}{3}$

Show Answer

Answer (2)

Solution

$\triangle ABC$ is equilateral

Orthocentre and centroid will be same

$G\left(\frac{5}{3}, \frac{5}{3}, \frac{5}{3}\right)$

Mid-point of AB is D $\left(\frac{3}{2}, 2, \frac{3}{2}\right)$

$\therefore \ell _1=\sqrt{\frac{1}{36}+\frac{1}{9}+\frac{1}{36}}$

$\ell _1=\sqrt{\frac{1}{6}}=\ell _2=\ell _3$

$\therefore \ell _1^{2}+\ell _2^{2}+\ell _3^{2}=\frac{1}{2}$