Three Dimensional Geometry Question 15

Question 15 - 2024 (29 Jan Shift 2)

Let $O$ be the origin, and $M$ and $N$ be the points on the lines $\frac{x-5}{4}=\frac{y-4}{1}=\frac{z-5}{3}$ and $\frac{x+8}{12}=\frac{y+2}{5}=\frac{z+11}{9}$ respectively such that $MN$ is the shortest distance between the given lines. Then $\overrightarrow{OM} \cdot \overrightarrow{ON}$ is equal to

Show Answer

Answer (9)

Solution

$L _1: \frac{x-5}{4}=\frac{y-4}{1}=\frac{z-5}{3}=\lambda \quad \operatorname{drs}(4,1,3)=b _1$

$M(4 \lambda+5, \lambda+4,3 \lambda+5)$

$L _2: \frac{x+8}{12}=\frac{y+2}{5}=\frac{z+11}{9}=\mu$

$N(12 \mu-8,5 \mu-2,9 \mu-11)$

$\overrightarrow{MN}=(4 \lambda-12 \mu+13, \lambda-5 \mu+6,3 \lambda-9 \mu+16)$.

Now

$\overrightarrow{b} _1 \times \overrightarrow{b} _2=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 4 & 1 & 3 \\ 12 & 5 & 9\end{array}\right|=-6 \hat{i}+8 \hat{k}$.

Equation (1) and (2)

$\therefore \frac{4 \lambda-12 \mu+13}{-6}=\frac{\lambda-5 \mu+6}{0}=\frac{3 \lambda-9 \mu+16}{8}$

I and II

$\lambda-5 \mu+6=0$…

I and III

$\lambda-3 \mu+4=0$.

Solve (3) and (4) we get

$\lambda=-1, \mu=1$

$\therefore M(1,3,2)$

$N(4,3,-2)$

$\therefore \overrightarrow{OM} \cdot \overrightarrow{ON}=4+9-4=9$