Three Dimensional Geometry Question 11

Question 11 - 2024 (29 Jan Shift 1)

Let $O$ be the origin and the position vector of $A$ and $B$ be $2 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}+4 \hat{k}$ respectively. If the internal bisector of $\angle A O B$ meets the line $A B$ at $C$, then the length of $OC$ is

(1) $\frac{2}{3} \sqrt{31}$

(2) $\frac{2}{3} \sqrt{34}$

(3) $\frac{3}{4} \sqrt{34}$

(4) $\frac{3}{2} \sqrt{31}$

Show Answer

Answer (2)

Solution

length of $O C=\frac{\sqrt{136}}{3}=\frac{2 \sqrt{34}}{3}$