Three Dimensional Geometry Question 10

Question 10 - 2024 (27 Jan Shift 2)

The lines $\frac{x-2}{2}=\frac{y}{-2}=\frac{z-7}{16}$ and $\frac{x+3}{4}=\frac{y+2}{3}=\frac{z+2}{1}$ intersect at the point $P$. If the distance of $P$ from the line $\frac{x+1}{2}=\frac{y-1}{3}=\frac{z-1}{1}$ is $l$, then $14 l^{2}$ is equal to

Show Answer

Answer (108)

Solution

Sol. $\frac{x-2}{1}=\frac{y}{-1}=\frac{z-7}{8}=\lambda$

$\frac{x+3}{4}=\frac{y+2}{3}=\frac{z+2}{1}=k$

$\Rightarrow \lambda+2=4 k-3$

$-\lambda=3 k-2$

$\Rightarrow k=1, \lambda=-1$

$8 \lambda+7=k-2$

$\therefore P=(1,1,-1)$

Projection of $2 \hat{i}-2 \hat{k}$ on $2 \hat{i}+3 \hat{j}+\hat{k}$ is

$=\frac{4-2}{\sqrt{4+9+1}}=\frac{2}{\sqrt{14}}$

$\therefore l^{2}=8-\frac{4}{14}=\frac{108}{14}$

$\Rightarrow 14 l^{2}=108$