Straight Lines Question 1

Question 1 - 2024 (01 Feb Shift 2)

Let $A B C$ be an isosceles triangle in which $A$ is at $(-1,0), \angle A=\frac{2 \pi}{3}, AB=AC$ and $B$ is on the positive $x$ axis. If $BC=4 \sqrt{3}$ and the line $BC$ intersects the line $y=x+3$ at $(\alpha, \beta)$, then $\frac{\beta^{4}}{\alpha^{2}}$ is :

Show Answer

Answer (36)

Solution

$\frac{c}{\sin 30^{\circ}}=\frac{4 \sqrt{3}}{\sin 120^{\circ}}$ [By sine rule]

$2 c=8 \Rightarrow c=4$

$AB=|(b+1)|=4$

$b=3, m _{AB}=0$

$m _{BC}=\frac{-1}{\sqrt{3}}$

$BC:-y=\frac{-1}{\sqrt{3}}(x-3)$

$\sqrt{3} y+x=3$

Point of intersection : $y=x+3, \sqrt{3} y+x=3$

$(\sqrt{3+1}) y=6$

$y=\frac{6}{\sqrt{3}+1}$

$x=\frac{6}{\sqrt{3}+1}-3$

$=\frac{6-3 \sqrt{3}-3}{\sqrt{3}+1}$

$=3 \frac{(1-\sqrt{3})}{(1+\sqrt{3})}=\frac{-6}{(1+\sqrt{3})^{2}}$

$\frac{\beta^{4}}{\alpha^{2}}=36$