Quadratic Equation Question 9

Question 9 - 2024 (31 Jan Shift 2)

The number of solutions, of the equation $e^{\sin x}-2 e^{-\sin x}=2$ is

(1) 2

(2) more than 2

(3) 1

(4) 0

Show Answer

Answer (4)

Solution

Take $e^{\sin x}=t(t>0)$

$\Rightarrow t-\frac{2}{t}=2$

$\Rightarrow \frac{t^{2}-2}{t}=2$

$\Rightarrow t^{2}-2 t-2=0$

$\Rightarrow t^{2}-2 t+1=3$

$\Rightarrow(t-1)^{2}=3$

$\Rightarrow t=1 \pm \sqrt{3}$

$\Rightarrow t=1 \pm 1.73$

$\Rightarrow t=2.73$ or $-0.73($ rejected as $t>0)$

$\Rightarrow e^{\sin x}=2.73$

$\Rightarrow \log _e e^{\sin x}=\log _e 2.73$

$\Rightarrow \sin x=\log _e 2.73>1$

So no solution.