Quadratic Equation Question 7

Question 7 - 2024 (31 Jan Shift 1)

For $0<c<b<a$, let $(a+b-2 c) x^{2}+(b+c-2 a) x+(c+a-2 b)=0$ and $\alpha \neq 1$ be one of its root.

Then, among the two statements

(I) If $\alpha \in(-1,0)$, then $b$ cannot be the geometric mean of $a$ and $c$

(II) If $\alpha \in(0,1)$, then $b$ may be the geometric mean of a and $c$

(1) Both (I) and (II) are true

(2) Neither (I) nor (II) is true

(3) Only (II) is true

(4) Only (I) is true

Show Answer

Answer (1)

Solution

$f(x)=(a+b-2 c) x^{2}+(b+c-2 a) x+(c+a-2 b)$

$f(x)=a+b-2 c+b+c-2 a+c+a-2 b=0$

$f(1)=0$

$\therefore \alpha \cdot 1=\frac{c+a-2 b}{a+b-2 c}$

$\alpha=\frac{c+a-2 b}{a+b-2 c}$

If $-1<\alpha<0$

$-1<\frac{c+a-2 b}{a+b-2 c}<0$

$b+c<2 a$ and $b>\frac{a+c}{2}$

therefore, $b$ cannot be G.M. between $a$ and $c$.

If, $0<\alpha<1$

$0<\frac{c+a-2 b}{a+b-2 c}<1$

$b>c$ and $b<\frac{a+c}{2}$

Therefore, $b$ may be the G.M. between $a$ and $c$.