Permutation Combination Question 3

Question 3 - 2024 (27 Jan Shift 2)

Let $\alpha=\frac{(4 !) !}{(4 !)^{3 !}}$ and $\beta=\frac{(5 !) !}{(5 !)^{4 !}}$. Then :

(1) $\alpha \in N$ and $\beta \notin N$

(2) $\alpha \notin N$ and $\beta \in N$

(3) $\alpha \in N$ and $\beta \in N$

(4) $\alpha \notin N$ and $\beta \notin N$

Show Answer

Answer (3)

Solution

$\alpha=\frac{(4 !) !}{(4 !)^{3 !}}, \beta=\frac{(5 !) !}{(5 !)^{4 !}}$

$\alpha=\frac{(24) !}{(4 !)^{6}}, \beta=\frac{(120) !}{(5 !)^{24}}$

Let 24 distinct objects are divided into 6 groups of 4 objects in each group.

No. of ways of formation of group $=\frac{24 !}{(4 !)^{6} .6 !} \in N$

Similarly,

Let 120 distinct objects are divided into 24 groups of 5 objects in each group.

No. of ways of formation of groups

$=\frac{(120) !}{(5 !)^{24} .24 !} \in N$