Jee Main 2024 30 01 2024 Shift1

Question 1

In an arithmetic progression if sum of 20 terms is 790 and sum of 10 terms is 145 , then $S _{15}-S _5$ is (when $S _n$ denotes sum of $n$ terms)

(1) 400

(2) 395

(3) 385

(4) 405

Show Answer

Answer: (2)

Solution:

$S _{20}=\frac{20}{2}[2 a+19 d]=790$

$2 a+19 d=79$

$S _{10}=\frac{10}{2}[2 a+9 d]=145$

$2 a+9 d=29$

from (1) and (2) $a=-8, \quad d=5$

$S _{15}-S _5=\frac{15}{2}[2 a+14 d]-\frac{5}{2}[2 a+4 d]$

$=\frac{15}{2}[-16+70]-\frac{5}{2}[-16+20]$

$=405-10$

$=395$

Question 2

If the foot of perpendicular from $(1,2,3)$ to the line $\frac{x+1}{2}=\frac{y-2}{5}=\frac{z-4}{1}$ is $(\alpha, \beta, \gamma)$ then find $\alpha+\beta+\gamma$

(1) 6

(2) 5.8

(3) 4.8

(4) 5

Show Answer

Answer: (2)

Solution:

$(\alpha-1) \times 2+(\beta-2) \times 5+(\gamma-3) \times 1=0$

$2 \alpha+5 \beta+\gamma-15=0$

Also, $P$ lie on line

$\Rightarrow \alpha+1=2 \lambda$

$\beta-2=5 \lambda$

$$ \begin{aligned} & \gamma-4=\lambda \\ \Rightarrow & 2(2 \lambda-1)+5(5 \lambda+2)+\lambda+4-15=0 \\ \Rightarrow & 4 \lambda+25 \lambda+\lambda-2+10+4-15=0 \\ & 30 \lambda-3=0 \\ \Rightarrow & \lambda=\frac{1}{10} \\ \Rightarrow & \alpha+\beta+\gamma=(2 \lambda-1)+(5 \lambda+2)+(\lambda+4) \\ & 8 \lambda+5=\frac{8}{10}+5=5.8 \end{aligned} $$

Question 3

$\lim _{n \rightarrow \infty} \sum _{k=1}^{n} \frac{n^{3}}{\left(n^{2}+k^{2}\right)\left(n^{2}+3 k^{2}\right)}$

(1) $\frac{\pi}{2 \sqrt{3}}-\frac{\pi}{8}$

(2) $\frac{\pi}{2 \sqrt{3}}+\frac{\pi}{8}$

(3) $\frac{\pi}{2}-\frac{\pi}{\sqrt{3}}$

(4) $\frac{\pi}{\sqrt{3}}-\frac{\pi}{4}$

Show Answer

Answer: (1)

Solution:

$\lim _{n \rightarrow \infty} \sum _{k=1}^{n} \frac{n^{3}}{n^{4}\left(1+\frac{k^{2}}{n^{2}}\right)\left(1+\frac{3 k^{2}}{n^{2}}\right)}$

$$ =\lim _{n \rightarrow \infty} \frac{1}{n} \sum _{k=1}^{n} \frac{1}{\left(1+\frac{k^{2}}{n^{2}}\right)\left(1+\frac{3 k^{2}}{n^{2}}\right)} $$

$=\int _0^{1} \frac{d x}{3\left(1+x^{2}\right)\left(\frac{1}{3}+x^{2}\right)}$

$=\int _0^{1} \frac{1}{3} \times \frac{3}{2} \frac{\left(x^{2}+1\right)-\left(x^{2}+\frac{1}{3}\right)}{\left(1+x^{2}\right)\left(x^{2}+\frac{1}{3}\right)} d x$

$=\frac{1}{2} \int _0^{1}\left[\frac{1}{x^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}}-\frac{1}{1+x^{2}}\right] d x$

$=\frac{1}{2}\left[\sqrt{3} \tan ^{-1}(\sqrt{3} x)\right] _0^{1}-\frac{1}{2}\left(\tan ^{-1} x\right) _0^{1}$

$=\frac{\sqrt{3}}{2}\left(\frac{\pi}{3}\right)-\frac{1}{2}\left(\frac{\pi}{4}\right)=\frac{\pi}{2 \sqrt{3}}-\frac{\pi}{8}$

Question 4

The value of maximum area possible of a $\triangle A B C$ such that $A(0,0)$ and $B(x, y)$ and $C(-x, y)$ such that $y=-2 x^{2}+54 x$ is (in sq. unit)

(1) 5800

(2) 5832

(3) 5942

(4) 6008

Show Answer

Answer: (2)

Solution:

Area of $\Delta$

$=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ x & y & 1 \\ -x & y & 1\end{array}\right|$

$\Rightarrow\left|\frac{1}{2}(x y+x y)\right|=|x y|$

Area $(\Delta)=|x y|=\left|x\left(-2 x^{2}+54 x\right)\right|$

$\frac{d(\Delta)}{d x}=\left|\left(-6 x^{2}+108 x\right)\right| \Rightarrow \frac{d \Delta}{d x}=0$ at $x=0$ and 18

$\Rightarrow$ at $x=0$, minima

and at $x=18$ maxima

Area $(\Delta)=\left|18\left(-2(18)^{2}+54 \times 18\right)\right|=5832$

Question 5

The range of $r$ for which circles $(x+1)^{2}+(y+2)^{2}=$ $r^{2}$ and $x^{2}+y^{2}-4 x-4 y+4=0$ coincide at two distinct points

(1) $3<r<7$

(2) $5<r<9$

(3) $\frac{1}{2}<r<4$

(4) $0<r<3$

Show Answer

Answer: (1)

Solution:

If two circles intersect at two distinct points

$\Rightarrow\left|r _1-r _2\right|<C _1 C _2<r _1+r _2$

$|r-2|<\sqrt{9+16}<r+2$

$|r-2|<5 \quad$ and $r+2>5$

$-5<r-2<5 \quad r>3$

$-3<r<7$

From (1) and (2)

$3<r<7$

Question 6

An ellipse whose length of minor axis is equal to half of length between foci, then eccentricity is

(1) $\frac{7}{2}$

(2) $\sqrt{17}$

(3) $\frac{2}{\sqrt{5}}$

(4) $\frac{3}{\sqrt{7}}$

Show Answer

Answer: (3)

Solution:

$\because a e=2 b$

$\therefore \frac{4 b^{2}}{a^{2}}=e^{2}$

Or $4\left(1-e^{2}\right)=e^{2}$

$\therefore 4=5 e^{2} \Rightarrow e=\frac{2}{\sqrt{5}}$

Question 7

If $g^{\prime}\left(\frac{3}{2}\right)=g^{\prime}\left(\frac{1}{2}\right)$ and

$f(x)=\frac{1}{2}[g(x)+g(2-x)]$ and $f^{\prime}\left(\frac{3}{2}\right)=f^{\prime}\left(\frac{1}{2}\right)$ then

(1) $f^{\prime \prime}(x)=0$ has exactly one root in $(0,1)$

(2) $f^{\prime \prime}(x)=0$ has no root in $(0,1)$

(3) $f^{\prime \prime}(x)=0$ has at least two roots in $(0,2)$

(4) $f^{\prime \prime}(x)=0$ has 3 roots in $(0,2)$

Show Answer

Answer: (3)

Solution:

$f^{\prime}(x)=\frac{g^{\prime}(x)-g^{\prime}(2-x)}{2}, f^{\prime}\left(\frac{3}{2}\right)=\frac{g^{\prime}\left(\frac{3}{2}\right)-g^{\prime}\left(\frac{1}{2}\right)}{2}=0$

Also $f^{\prime}\left(\frac{1}{2}\right)=\frac{g^{\prime}\left(\frac{1}{2}\right)-g^{\prime}\left(\frac{3}{2}\right)}{2}=0, f^{\prime}(1)=0$

$\Rightarrow f^{\prime}\left(\frac{3}{2}\right)=f^{\prime}\left(\frac{1}{2}\right)=0$

$\Rightarrow$ roots in $\left(\frac{1}{2}, 1\right)$ and $\left(1, \frac{3}{2}\right)$

$\Rightarrow f^{\prime \prime}(x)$ is zero at least twice in $\left(\frac{1}{2}, \frac{3}{2}\right)$

Question 8

The domain of $y=\cos ^{-1}\left|\frac{2-|x|}{4}\right|+(\log (3-x))^{-1}$ is $[-\alpha, \beta)-{\gamma}$, then value of $\alpha+\beta+\gamma=$ ?

(1) 9

(2) 12

(3) 11

(4) 10

Show Answer

Answer: (3)

Solution:

$-1 \leq\left|\frac{2-|x|}{4}\right| \leq 1$

$\Rightarrow\left|\frac{2-|x|}{4}\right| \leq 1$

$\Rightarrow-1 \leq \frac{2-|x|}{4} \leq 1$

$-4 \leq 2-|x| \leq 4$

$-6 \leq-|x| \leq 2$

$-2 \leq|x| \leq 6$

$|x| \leq 6$

$\Rightarrow x \in[-6,6]$

Now, $3-x \neq 1$

And $x \neq 2$

and $3-x>0$

$x<3$

From (1), (2) and (3)

$\Rightarrow x \in[-6,3]-{2}$

$\alpha=6$

$\beta=3$

$\gamma=2$

$\alpha+\beta+\gamma=11$

Question 9

If $y=f(x)$ is solution of differential equation $\left(x^{2}-1\right)$ $d y=\left(\left(x^{3}+1\right)+\sqrt{1-x^{2}}\right) d x$ and $y(0)=2$ then find $y\left(\frac{1}{2}\right)$.

(1) $\frac{13}{7}-\frac{\pi}{2}+\ln 5$

(2) $\frac{15}{7}+\frac{\pi}{3}+\ln 2$

(3) $\frac{17}{8}+\frac{\pi}{6}-\ln 2$

(4) $\frac{18}{7}-\frac{\pi}{6}+\ln 3$

Show Answer

Answer: (3)

Solution:

$\frac{d y}{d x}=\frac{(x+1)\left(x^{2}-x+1\right)+\sqrt{(1-x)(1+x)}}{(x-1)(x+1)}$

$\Rightarrow \frac{d y}{d x}=\frac{x(x-1)+1}{(x-1)}+\sqrt{\frac{(1-x)(1+x)}{(x-1)^{2}(x+1)^{2}}}$

$\frac{d y}{d x}=x+\frac{1}{x-1}+\frac{1}{\sqrt{(1-x)(1+x)}}$

$\Rightarrow \quad d y=x d x+\frac{1}{(x-1)} d x+\frac{d x}{\sqrt{1-x^{2}}}$ $\Rightarrow y=\frac{x^{2}}{2}+\ln |x-1|+\sin ^{-1} x+c$

at $x=0, y=2 \Rightarrow 2=c$

$\Rightarrow y=\frac{x^{2}}{2}+\ln |x-1|+\sin ^{-1} x+2$

$y\left(\frac{1}{2}\right)=\frac{17}{8}+\frac{\pi}{6}-\ln 2$

Question 10

Given $x^{2}-70 x+\lambda=0$ with positive roots $\alpha$ and $\beta$ where one of the root is less than 10 and $\frac{\lambda}{2}$ and $\frac{\lambda}{3}$ are not integers then find value of $\frac{\sqrt{\alpha-1}+\sqrt{\beta-1}}{|\alpha-\beta|}$ is equal to

(1) $\frac{1}{5}$

(2) $\frac{1}{12}$

(3) $\frac{1}{60}$

(4) $\frac{1}{70}$

Show Answer

Answer: (1)

Solution:

Given : $x^{2}-70 x+\lambda=0$

$\Rightarrow$ Let roots be $\alpha$ and $\beta$

$\Rightarrow \beta=70-\alpha$

$\lambda=\alpha(70-\alpha)$

$\lambda$ is not divisible by 2 and 3

$\Rightarrow \alpha=5, \beta=65$

$\Rightarrow \frac{\sqrt{5-1}+\sqrt{65-1}}{|60|}=\left|\frac{4+8}{60}\right|=\frac{1}{5}$

Question 11

A line passes through $(9,0)$, making angle $30^{\circ}$ with positive direction of $x$-axis. It is rotated by angle of $15^{\circ}$ with respect to $(9,0)$. Then one of the equation of new line is

(1) $y=(2+\sqrt{3})(x-9)$

(2) $y=(2-\sqrt{3})(x-9)$

(3) $y=2(x-9)$

(4) $y=-(x-9)$

Show Answer

Answer: (2)

Solution:

$Eq^{n}: y-0=\tan 15^{\circ}(x-9) \Rightarrow y=(2-\sqrt{3})(x-9)$

$Eq^{n}: y-0=\tan 45^{\circ}(x-9) \Rightarrow y=(x-9)$

Option (B) is correct

Question 12

For a non-zero complex number $z$ satisfying $z^{2}+i \bar{z}=0$, then value of $|z|^{2}$ is

(1) 1

(2) 2

(3) 3

(4) 4

Show Answer

Answer: (1)

Solution:

$z^{2}=-i \bar{z}$

$\left|z^{2}\right|=|-i \bar{z}|$

$\left|z^{2}\right|=|z|$

$|z|^{2}-|z|=0$

$|z|(|z|-1)=0$

$|z|=0$ (not acceptable)

$\therefore|z|=1$

$\therefore|z|^{2}=1$

Question 13

If $|\vec{a}|=1,|\vec{b}|=4$

$\vec{a} \cdot \vec{b}=2$ and $\vec{c}=2(\vec{a} \times \vec{b})-3 \vec{b}$

Then the angle between $\vec{b}$ and $\vec{c}$ is

(1) $\theta=\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$

(2) $\theta=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

(3) $\theta=\cos ^{-1}\left(\frac{1}{2}\right)$

(4) $\theta=\cos ^{-1}\left(\frac{-1}{2}\right)$

Show Answer

Answer: (1)

Solution:

Given $|\vec{a}|=1,|\vec{b}|=4, \vec{a} \cdot \vec{b}=2$

$\vec{c}=2(\vec{a} \times \vec{b})-3 \vec{b}$

Dot product with $\vec{a}$ on both sides

$\vec{c} \cdot \vec{a}=-6$

Dot product with $\vec{b}$ on both sides

$\vec{b} \cdot \vec{c}=-48$

$\vec{c} \cdot \vec{c}=4|\vec{a} \times \vec{b}|^{2}+9|\vec{b}|^{2}$

$|\vec{c}|^{2}=4\left[|\vec{a}|^{2} \cdot|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}\right]+9|\vec{b}|^{2}$

$|\vec{C}|^{2}=4\left[(1)(4)^{2}-(4)\right]+9(16)$ $|\vec{C}|^{2}=4[12]+144$

$|\vec{C}|^{2}=48+144$

$|\vec{C}|^{2}=192$

$\therefore \quad \cos \theta=\frac{\vec{b} \cdot \vec{c}}{|\vec{b}||\vec{c}|}$

$\cos \theta=\frac{-48}{\sqrt{192} \cdot 4}$

$\cos \theta=\frac{-48}{8 \sqrt{3} \cdot 4}$

$\cos \theta=\frac{-3}{2 \sqrt{3}}$

$\cos \theta=\frac{-\sqrt{3}}{2} \quad \Rightarrow \theta=\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$

Question 14

Given set $S={0,1,2,3, \ldots . ., 10}$. If a random ordered pair $(x, y)$ of elements of $S$ is chosen, then find probability that $|x-y|>5$

(1) $\frac{30}{121}$

(2) $\frac{31}{121}$

(3) $\frac{62}{121}$

(4) $\frac{64}{121}$

Show Answer

Answer: (1)

Solution:

If $x=0, y=6,7,8,9,10$

If $x=1, y=7,8,9,10$

If $x=2, y=8,9,10$

If $x=3, y=9,10$

If $x=4, y=10$

If $x=5, y=$ no possible value

Total possible ways $=(5+4+3+2+1) \times 2$

$$ =30 $$

Required probability $=\frac{30}{11 \times 11}=\frac{30}{121}$

Question 15

Number of integral terms in the binomial expansion of $\left(7^{1 / 2}+11^{1 / 6}\right)^{824}$ is

Show Answer

Answer: (138)

Solution:

$T _{n+1}={ }^{n} C _r 11^{\frac{r}{6}} \cdot 7^{\frac{824-r}{2}}$

For integral term

6 should divide $r$

and $\frac{824-r}{2}$ must be integer

$\Rightarrow 2$ most divide $r$

$\Rightarrow r$ divisible by 6

$\Rightarrow$ possible values of $r \in{0,1,2, \ldots 824}$

$\Rightarrow$ For integer terms

$r \in{0,6,12, \ldots 822}(822=0+(n-1) 6 \Rightarrow n=138)$

$=138$ terms

Question 16

$9 \int _0^{9}\left[\sqrt{\frac{10 x}{x+1}}\right] d x$ is equal to (where [ ] represents greatest integer function)

Show Answer

Answer: (155)

Solution:

$I=9 \int _0^{9}\left[\sqrt{\frac{10 x}{x+1}}\right] d x$

$=9\left[\int _0^{1 / 9} 0 d x+\int _{1 / 9}^{2 / 3} d x+\int _{2 / 3}^{9} 2 d x\right]$

$=9\left[\frac{2}{3}-\frac{1}{9}+2\left[9-\frac{2}{3}\right]\right]$

$=9\left[\frac{5}{9}+2 \times \frac{25}{3}\right]$

$=5+6 \times 25$

$=5+150$

$=155$

Question 17

In a class there are 40 students. 16 passed in Chemistry, 20 passed in Physics, 25 passed in Mathematics. 15 students passed in both Mathematics and Physics. 15 students passed in both Mathematics and Chemistry and 10 students passed in both Physics and Chemistry. Find the maximum number of students that passed in all the subjects.

Show Answer

Answer: (19)

Solution:

$n(C)=16, n(P)=20, n(M)=25$

$n(M \cap P)=n(M \cap C)=15, n(P \cap C)=10$,

$n(M \cap C \cap P)=x$.

$n(C \cup P \cup M) \leq n(U)=40$

$n(C \cup P \cup M)=n(C)+n(P)+n(M)-n(C \cup M)-$ $n(P \cup M)-n(C \cap P)+n(C \cap P \cap M)$

$40 \geq 16+20+25-15-15-10+x$

$40 \geq 61-40+x$

$19 \geq x$

So maximum number of students that passed all the exams is 19 .

Question 18

For the following data table

$x _i$ $f _i$
$0-4$ 2
$4-8$ 4
$8-12$ 7
$12-16$ 8
$16-20$ 6

Find the value of $20 M$ (where $M$ is median of the data)

Show Answer

Answer: (245)

Solution:

$x _i$ $f _i$ c.f.
$0-4$ 2 2
$4-8$ 4 6
$8-12$ 7 13
$12-16$ 8 21
$16-20$ 6 27

$$ \begin{array}{r} N=\sum f=27 \\ \left(\frac{N}{2}\right)=\frac{27}{2}=13.5 \end{array} $$

So, we have median lies in the class $12-16$

$l _1=12, f=8, h=4$, c.f. $=13$

So, here we apply formula

$$ \begin{aligned} M & =I _1+\frac{\frac{N}{2}-c . f .}{f} \times h=12+\frac{13.5-13}{8} \times 4 \\ & =12+\frac{.5}{2} \end{aligned} $$

$M=\frac{24.5}{2}=12.25$

$$ 20 M=20 \times 12.25 $$

$$ =245 $$

Question 19

Set $A={1,2,3,4,5,6,7}$

If number of functions from set $A$ to power set of $A$ can be expressed as $m^{n}$ ( $m$ is least integer). Find $m+n$.

Show Answer

Answer: (51)

Solution:

$n P(A)=2^{7}=128$

$f: A \rightarrow B$

Number of function $=128 \times 128 \ldots . .128=128^{7}$

$=\left(2^{7}\right)^{7}=2^{49}$

$\Rightarrow m^{n}=2^{49}$

$\therefore m+n=49+2=51$