Matrices Question 6

Question 6 - 2024 (29 Jan Shift 1)

Let $A$ be a square matrix such that $A A^{T}=I$. Then $\frac{1}{2} A\left[\left(A+A^{T}\right)^{2}+\left(A-A^{T}\right)^{2}\right]$ is equal to

(1) $A^{2}+I$

(2) $A^{3}+I$

(3) $A^{2}+A^{T}$

(4) $A^{3}+A^{T}$

Show Answer

Answer (4)

Solution

$AA^{T}=I=A^{T} A$

On solving given expression, we get

$$ \begin{aligned} & \frac{1}{2} A\left[A^{2}+\left(A^{T}\right)^{2}+2 AA^{T}+A^{2}+\left(A^{T}\right)^{2}-2 AAA^{T}\right] \\ & =A\left[A^{2}+\left(A^{T}\right)^{2}\right]=A^{3}+A^{T} \end{aligned} $$