Matrices Question 2

Question 2 - 2024 (01 Feb Shift 2)

Let $A=I _2-M M^{T}$, where $M$ is real matrix of order $2 \times 1$ such that the relation $M^{T} M=I _1$ holds. If $\lambda$ is a real number such that the relation $AX=\lambda X$ holds for some non-zero real matrix $X$ of order $2 \times 1$, then the sum of squares of all possible values of $\lambda$ is equal to :

Show Answer

Answer (2)

Solution

$A=I _2-2 MM^{T}$

$A^{2}=\left(I _2-2 MM^{T}\right)\left(I _2-2 MM^{T}\right)$

$=I _2-2 MM^{T}-2 MM^{T}+4 MM^{T} MM^{T}$

$=I _2-4 MM^{T}+4 MM^{T}$

$=I _2$

$AX=\lambda X$

$A^{2} X=\lambda AX$

$X=\lambda(\lambda X)$

$X=\lambda^{2} X$

$X\left(\lambda^{2}-1\right)=0$

$\lambda^{2}=1$

$\lambda= \pm 1$

Sum of square of all possible values $=2$