Hyperbola Question 4

Question 4 - 2024 (30 Jan Shift 1)

Let the latus rectum of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{b^{2}}=1$ subtend an angle of $\frac{\pi}{3}$ at the centre of the hyperbola. If $b^{2}$ is equal to $\frac{l}{m}(1+\sqrt{n})$, where $l$ and $m$ are co-prime numbers, then $l^{2}+m^{2}+n^{2}$ is equal to

Show Answer

Answer (182)

Solution

LR subtends $60^{\circ}$ at centre

$\Rightarrow \tan 30^{\circ}=\frac{b^{2} / a}{a e}=\frac{b^{2}}{a^{2} e}=\frac{1}{\sqrt{3}}$

$\Rightarrow e=\frac{\sqrt{3} b^{2}}{9}$

Also, $e^{2}=1+\frac{b^{2}}{9} \Rightarrow 1+\frac{b^{2}}{9}=\frac{3 b^{4}}{81}$

$\Rightarrow b^{4}=3 b^{2}+27$

$\Rightarrow b^{4}-3 b^{2}-27=0$

$\Rightarrow b^{2}=\frac{3}{2}(1+\sqrt{13})$

$\Rightarrow \ell=3, m=2, n=13$

$\Rightarrow \ell^{2}+m^{2}+n^{2}=182$