Functions Question 4

Question 4 - 2024 (27 Jan Shift 2)

Let $f: R-{\frac{-1}{2} } \rightarrow R$ and $g: R-{\frac{-5}{2} } \rightarrow R$ be defined as $f(x)=\frac{2 x+3}{2 x+1}$ and $g(x)=\frac{|x|+1}{2 x+5}$. Then the domain of the function fog is :

(1) $R-{-\frac{5}{2} }$

(2) R

(3) $R-{-\frac{7}{4} }$

(4) $R-{-\frac{5}{2},-\frac{7}{4} }$

Show Answer

Answer (1)

Solution

$f(x)=\frac{2 x+3}{2 x+1} ; x \neq-\frac{1}{2}$

$g(x)=\frac{|x|+1}{2 x+5}, x \neq-\frac{5}{2}$

Domain of $f(g(x))$

$f(g(x))=\frac{2 g(x)+3}{2 g(x)+1}$

$\mathbf{x} \neq-\frac{5}{2}$ and $\frac{|x|+1}{2 x+5} \neq-\frac{1}{2}$

$x \in R-{-\frac{5}{2} }$ and $x \in R$

$\therefore$ Domain will be $R-{-\frac{5}{2} }$