Functions Question 2

Question 2 - 2024 (01 Feb Shift 2)

If the domain of the function $f(x)=\frac{\sqrt{x^{2}-25}}{\left(4-x^{2}\right)}+\log _{10}\left(x^{2}+2 x-15\right)$ is $(-\infty, \alpha) U[\beta, \infty)$, then $\alpha^{2}+\beta^{3}$ is equal to :

(1) 140

(2) 175

(3) 150

(4) 125

Show Answer

Answer (3)

Solution

$f(x)=\frac{\sqrt{x^{2}-25}}{4-x^{2}}+\log _{10}\left(x^{2}+2 x-15\right)$

Domain : $x^{2}-25 \geq 0 \Rightarrow x \in(-\infty,-5] \cup[5, \infty)$

$4-x^{2} \neq 0 \Rightarrow x \neq{-2,2}$

$x^{2}+2 x-15>0 \Rightarrow(x+5)(x-3)>0$

$\Rightarrow x \in(-\infty,-5) \cup(3, \infty)$

$\therefore x \in(-\infty,-5) \cup[5, \infty)$

$\alpha=-5 ; \beta=5$

$\therefore \alpha^{2}+\beta^{3}=150$