Ellipse Question 6

Question 6 - 2024 (31 Jan Shift 2)

Let $P$ be a parabola with vertex $(2,3)$ and directrix $2 x+y=6$. Let an ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ of eccentricity $\frac{1}{\sqrt{2}}$ pass through the focus of the parabola $P$. Then the square of the length of the latus rectum of $E$, is

(1) $\frac{385}{8}$

(2) $\frac{347}{8}$

(3) $\frac{512}{25}$

(4) $\frac{656}{25}$

Show Answer

Answer (4)

Solution

Slope of axis $=\frac{1}{2}$

$y-3=\frac{1}{2}(x-2)$

$\Rightarrow 2 y-6=x-2$

$\Rightarrow 2 y-x-4=0$

$2 x+y-6=0$

$4 x+2 y-12=0$

$\alpha+1.6=4 \Rightarrow \alpha=2.4$

$\beta+2.8=6 \Rightarrow \beta=3.2$

Ellipse passes through $(2.4,3.2)$

$\Rightarrow \frac{\left(\frac{24}{10}\right)^{2}}{a^{2}}+\frac{\left(\frac{32}{10}\right)^{2}}{b^{2}}=1$

Also $1-\frac{b^{2}}{a^{2}}=\frac{1}{2}=\frac{b^{2}}{a^{2}}=\frac{1}{2}$

$\Rightarrow a^{2}=2 b^{2}$

Put in $(1) \Rightarrow b^{2}=\frac{328}{25}$

$\Rightarrow\left(\frac{2 b^{2}}{a}\right)^{2}=\frac{4 b^{2}}{a^{2}} \times b^{2}=4 \times \frac{1}{2} \times \frac{328}{25}=\frac{656}{25}$