Differential Equations Question 4

Question 4 - 2024 (01 Feb Shift 2)

If $\frac{d x}{d y}=\frac{1+x-y^{2}}{y}, x(1)=1$, then $5 x(2)$ is equal to :

Show Answer

Answer (5)

Solution

$\frac{d x}{d y}-\frac{x}{y}=\frac{1-y^{2}}{y}$

Integrating factor $=e^{\int-\frac{1}{y} d y}=\frac{1}{y}$

$x \cdot \frac{1}{y}=\int \frac{1-y^{2}}{y^{2}} d y$

$\frac{x}{y}=\frac{-1}{y}-y+c$

$x=-1-y^{2}+c y$

$x(1)=1$

$1=-1-1+c \Rightarrow c=3$

$x=-1-y^{2}+3 y$

$5 x(2)=5(-1-4+6)$

$=5$