Differential Equations Question 10

Question 10 - 2024 (29 Jan Shift 1)

If the solution curve $y=y(x)$ of the differential equation $\left(1+y^{2}\right)\left(1+\log _e x\right) d x+x d y=0, x>0$ passes through the point $(1,1)$ and $y(e)=\frac{\alpha-\tan \left(\frac{3}{2}\right)}{\beta+\tan \left(\frac{3}{2}\right)}$, then $\alpha+2 \beta$ is

Show Answer

Answer (3)

Solution

$\int\left(\frac{1}{x}+\frac{\ln x}{x}\right) d x+\int \frac{d y}{1+y^{2}}=0$

$\ln x+\frac{(\ln x)^{2}}{2}+\tan ^{-1} y=C$

Put $x=y=1$

$\therefore C=\frac{\pi}{4}$

$\Rightarrow \ln x+\frac{(\ln x)^{2}}{2}+\tan ^{-1} y=\frac{\pi}{4}$

Put $x=e$

$\Rightarrow y=\tan \left(\frac{\pi}{4}-\frac{3}{2}\right)=\frac{1-\tan \frac{3}{2}}{1+\tan \frac{3}{2}}$

$\therefore \alpha=1, \beta=1$

$\Rightarrow \alpha+2 \beta=3$