Determinants Question 8

Question 8 - 2024 (30 Jan Shift 2)

Consider the system of linear equations

$x+y+z=5, x+2 y+\lambda^{2} z=9$

$x+3 y+\lambda z=\mu$, where $\lambda, \mu \in R$. Then, which of the following statement is NOT correct?

(1) System has infinite number of solution if $\lambda=1$ and $\mu=13$

(2) System is inconsistent if $\lambda=1$ and $\mu \neq 13$

(3) System is consistent if $\lambda \neq 1$ and $\mu=13$

(4) System has unique solution if $\lambda \neq 1$ and $\mu \neq 13$

Show Answer

Answer (4)

Solution

$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & \lambda^{2} \\ 1 & 3 & \lambda\end{array}\right|=0$

$\Rightarrow 2 \lambda^{2}-\lambda-1=0$

$\lambda=1,-\frac{1}{2}$

$\left|\begin{array}{ccc}1 & 1 & 5 \\ 2 & \lambda^{2} & 9 \\ 3 & \lambda & \mu\end{array}\right|=0 \Rightarrow \mu=13$

Infinite solution $\lambda=1 \& \mu=13$

For unique $\operatorname{sol}^{n} \lambda \neq 1$

For no $\operatorname{sol}^{n} \lambda=1 \& \mu \neq 13$

If $\lambda \neq 1$ and $\mu \neq 13$

Considering the case when $\lambda=-\frac{1}{2}$ and $\mu \neq 13$ this will generate no solution case