Continuity And Differentiability Question 3

Question 3 - 2024 (27 Jan Shift 1)

Consider the function.

$f(x)=\begin{cases}\frac{a\left(7 x-12-x^{2}\right)}{b\left|x^{2}-7 x+12\right|} & , x<3 \\ 2^{\frac{\sin (x-3)}{x-[x]}} & , \quad x>3 \\ b & , \quad x=3\end{cases}$

Where $[x]$ denotes the greatest integer less than or equal to $x$. If $S$ denotes the set of all ordered pairs $(a, b)$ such that $f(x)$ is continuous at $x=3$, then the number of elements in $S$ is :

(1) 2

(2) Infinitely many

(3) 4

(4) 1

Show Answer

Answer (4)

Solution

$f\left(3^{-}\right)=\frac{a}{b} \frac{\left(7 x-12-x^{2}\right)}{\left|x^{2}-7 x+12\right|} \quad$ (for $f(x)$ to be cont.)

$\Rightarrow f\left(3^{-}\right)=\frac{-a}{b} \frac{(x-3)(x-4)}{(x-3)(x-4)} ; x<3 \Rightarrow \frac{-a}{b}$

Hence $f\left(3^{-}\right)=\frac{-a}{b}$

Then $f\left(3^{+}\right)=2^{\lim _{x \rightarrow 3^{+}}\left(\frac{\sin (x-3)}{x-3}\right)}=2$ and

$f(3)=b$

Hence $f(3)=f\left(3^{+}\right)=f\left(3^{-}\right)$

$\Rightarrow b=2=-\frac{a}{b}$

$b=2, a=-4$

Hence only 1 ordered pair $(-4,2)$.