Continuity And Differentiability Question 2

Question 2 - 2024 (01 Feb Shift 2)

Let $f(x)=\left|2 x^{2}+5\right| x|-3|, x \in R$. If $m$ and $n$ denote the number of points where $f$ is not continuous and not differentiable respectively, then $m+n$ is equal to :

(1) 5

(2) 2

(3) 0

(4) 3

Show Answer

Answer (4)

Solution

$f(x)=\left|2 x^{2}+5\right| x|-3|$

Graph of $y=12 x^{2}+5 x-3$

Number of points of discontinuity $=0=m$

Number of points of non-differentiability $=3=n$