Complex Number Question 6

Question 6 - 2024 (27 Jan Shift 2)

Let the complex numbers $\alpha$ and $\frac{1}{\bar{\alpha}}$ lie on the circles $\left|z-z _0\right|^{2}=4$ and $\left|z-z _0\right|^{2}=16$ respectively, where $z _0=1+i$. Then, the value of $100|\alpha|^{2}$ is.

Show Answer

Answer (20)

Solution

$\left|z-z _0\right|^{2}=4$

$\Rightarrow\left(\alpha-z _0\right)\left(\bar{\alpha}-\bar{z} _0\right)=4$

$\Rightarrow \alpha \bar{\alpha}-\alpha \bar{z} _0-z _0 \bar{\alpha}+\left|z _0\right|^{2}=4$

$\Rightarrow|\alpha|^{2}-\alpha \bar{z} _0-z _0 \bar{\alpha}=2$

$\left|z-z _0\right|^{2}=16$

$\Rightarrow\left(\frac{1}{\bar{\alpha}}-z _0\right)\left(\frac{1}{\alpha}-\bar{z} _0\right)=16$

$\Rightarrow\left(1-\bar{\alpha} z _0\right)\left(1-\alpha \bar{z} _0\right)=16|\alpha|^{2}$

$\Rightarrow 1-\bar{\alpha} z _0-\alpha \bar{z} _0+|\alpha|^{2}\left|z _0\right|^{2}=16|\alpha|^{2}$

$\Rightarrow 1-\bar{\alpha} z _0-\alpha \bar{z} _0=14|\alpha|^{2}$

From (1) and (2)

$\Rightarrow 5|\alpha|^{2}=1$

$\Rightarrow 100|\alpha|^{2}=20$