Complex Number Question 1

Question 1 - 2024 (01 Feb Shift 1)

LetS =${z \in C:|z-1|= \text{1 and} (\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2}}$. Let $z _1, \quad z _2 \in S$ be such that

$\left|z _1\right|=\max _{z \in s}|z|$ and $\left|z _2\right|=\min _{z \in S}|z|$. Then $\left|\sqrt{2} z _1-z _2\right|^{2}$ equals :

(1) 1

(2) 4

(3) 3

(4) 2

Show Answer

Answer (4)

Solution

Let $Z=x+$ iy

Then $(x-1)^{2}+y^{2}=1 \quad \rightarrow[$ OPTION 1$]$

$& \quad(\sqrt{2}-1)(2 x)-i(2 i y)=2 \sqrt{2}$

$\Rightarrow(\sqrt{2}-1) x+y=\sqrt{2} \rightarrow(2)$

Solving (1) & (2)

we get

Either $x=1$ or $x=\frac{1}{2-\sqrt{2}} \rightarrow$

On solving (3) with (2)

we get

For $x=1 \Rightarrow y=1 \Rightarrow Z _2=1+i \&$ for

$x=\frac{1}{2-\sqrt{2}} \Rightarrow y=\sqrt{2}-\frac{1}{\sqrt{2}} \Rightarrow Z _1=\left(1+\frac{1}{\sqrt{2}}\right)+\frac{i}{\sqrt{2}}$

Now

$$ \begin{aligned} & \left|\sqrt{2} z _1-z _2\right|^{2} \\ & =\left|\left(\frac{1}{\sqrt{2}}+1\right) \sqrt{2}+i-(1+i)\right|^{2} \\ & =(\sqrt{2})^{2} \\ & =2 \end{aligned} $$