Circle Question 8

Question 8 - 2024 (30 Jan Shift 2)

Consider two circles $C _1: x^{2}+y^{2}=25$ and $C _2:(x-\alpha)^{2}+y^{2}=16$, where $\alpha \in(5,9)$. Let the angle between the two radii (one to each circle) drawn from one of the intersection points of $C _1$ and $C _2$ be $\sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)$. If the length of common chord of $C _1$ and $C _2$ is $\beta$, then the value of $(\alpha \beta)^{2}$ equals

Show Answer

Answer (1575)

Solution

$C _1: x^{2}+y^{2}=25, C _2:(x-\alpha)^{2}+y^{2}=16$

$5<\alpha<9$

$\theta=\sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)$

$\sin \theta=\frac{\sqrt{63}}{8}$

Area of $\triangle OAP=\frac{1}{2} \times \alpha\left(\frac{\beta}{2}\right)=\frac{1}{2} \times 5 \times 4 \sin \theta$

$\Rightarrow \alpha \beta=40 \times \frac{\sqrt{63}}{8}$

$\alpha \beta=5 \times \sqrt{63}$

$(\alpha \beta)^{2}=25 \times 63=1575$