Circle Question 5

Question 5 - 2024 (27 Jan Shift 2)

Consider a circle $(x-\alpha)^{2}+(y-\beta)^{2}=50$, where $\alpha, \beta>0$. If the circle touches the line $y+x=0$ at the point $P$, whose distance from the origin is $4 \sqrt{2}$, then $(\alpha+\beta)^{2}$ is equal to

Show Answer

Answer (100)

Solution

$S:(x-\alpha)^{2}+(y-\beta)^{2}=50$

$C P=r$

$\left|\frac{\alpha+\beta}{\sqrt{2}}\right|=5 \sqrt{2}$

$\Rightarrow(\alpha+\beta)^{2}=100$