Circle Question 1

Question 1 - 2024 (01 Feb Shift 1)

Let $C: x^{2}+y^{2}=4$ and $C^{\prime}: x^{2}+y^{2}-4 \lambda x+9=0$ be two circles. If the set of all values of $\lambda$ so that the circles $C$ and $C^{\prime}$ intersect at two distinct points, is $\mathbf{R}-[a, b]$, then the point $(8 a+12,16 b-20)$ lies on the curve :

(1) $x^{2}+2 y^{2}-5 x+6 y=3$

(2) $5 x^{2}-y=-11$

(3) $x^{2}-4 y^{2}=7$

(4) $6 x^{2}+y^{2}=42$

Show Answer

Answer (1)

Solution

$x^{2}+y^{2}=4$

$C(0,0) \quad r _1=2$

$C^{\prime}(2 \lambda, 0) \circ r _2=\sqrt{4 \lambda^{2}-9}$

$\left|r _1-r _2\right|<C C^{\prime}<\left|r _1+r _2\right|$

$\left|2-\sqrt{4 \lambda^{2}-9}\right|<|2 \lambda|<2+\sqrt{4 \lambda^{2}-9}$

$4+4 \lambda^{2}-9-4 \sqrt{4 \lambda^{2}-9}<4 \lambda^{2}$

True $\lambda \in R$…

$4 \lambda^{2}<4+4 \lambda^{2}-9+4 \sqrt{4 \lambda^{2}-9}$

$5<4 \sqrt{4 \lambda^{2}-9}$ and $\quad \lambda^{2} \geq \frac{9}{4}$

$\frac{25}{16}<4 \lambda^{2}-9 \quad \lambda \in\left(-\infty,-\frac{3}{2}\right] \cup\left[\frac{3}{2}, \infty\right)$

$\frac{169}{64}<\lambda^{2}$

$\lambda \in\left(-\infty,-\frac{13}{8}\right) \cup\left(\frac{13}{8}, \infty\right)$

from (1) and (2)

$\lambda \in$

$\lambda \in\left(-\infty,-\frac{13}{8}\right) \cup\left(\frac{13}{8}, \infty\right) \Rightarrow R-\left[-\frac{13}{8}, \frac{13}{8}\right]$

as per question $a=-\frac{13}{8}$ and $b=\frac{13}{8}$

$\therefore \quad$ required point is $(-1,6)$ with satisfies option (4)