Binomial Theorem Question 1

Question 1 - 2024 (01 Feb Shift 1)

If the Coefficient of $x^{30}$ in the expansion of $\left(1+\frac{1}{x}\right)^{6}\left(1+x^{2}\right)^{7}\left(1-x^{3}\right)^{8} ; x \neq 0$ is $\alpha$, then $|\alpha|$ equals

Show Answer

Answer (678)

Solution

coeff of $x^{30}$ in $\frac{(x+1)^{6}\left(1+x^{2}\right)^{7}\left(1-x^{3}\right)^{8}}{x^{6}}$ coeff. of $x^{36}$ in $(1+x)^{6}\left(1+x^{2}\right)^{7}\left(1-x^{3}\right)^{8}$

General term

${ }^{6} C _{r _1}{ }^{7} C _{r _2}{ }^{8} C _{r _3}(-1)^{r _3} X^{r _1+2 r _2+3 r _3}$

$r _1+2 r _2+3 r _3=36$

Case-I :

$r _1$ $r _2$ $r _3$
0 6 8
2 5 8
4 4 8
6 3 8

$r _1+2 r _2=12\left(\right.$ Taking $\left.r _3=8\right)$

Case II :

$r _1$ $r _2$ $r _3$
1 7 7
3 6 7
5 5 7

$r _1+2 r _2=15\left(\right.$ Taking $\left.r _3=7\right)$

$r _1$ $r _2$ $r _3$
4 7 6
6 6 6

Case-III :

$r _1+2 r _2=18\left(\right.$ Taking $\left.r _3=6\right)$

Coeff. $=7+(15 \times 21)+(15 \times 35)+(35)$

$-(6 \times 8)-(20 \times 7 \times 8)-(6 \times 21 \times 8)+(15 \times 28)$

$+(7 \times 28)=-678=\alpha$

$|\alpha|=678$