Area Under Curves Question 3

Question 3 - 2024 (01 Feb Shift 2)

The sum of squares of all possible values of $k$, for which area of the region bounded by the parabolas $2 y^{2}=kx$ and $ky^{2}=2(y-x)$ is maximum, is equal to :

Show Answer

Answer (8)

Solution

$k y^{2}=2(y-x)$

$2 y^{2}=kx$

Point of intersection $\rightarrow$

$ky^{2}=\left(\frac{y-2 y^{2}}{k}\right)$

$y=0 \quad ky=2\left(\frac{1-2 y}{k}\right)$

$ky+\frac{4 y}{k}=2$

$y=\frac{2}{k+\frac{4}{k}}=\frac{2 k}{k^{2}+4}$

$A=\int _0^{\frac{2 k}{k^{2}+4}}\left(\left(y-\frac{k y^{2}}{2}\right)-\left(\frac{2 y^{2}}{k}\right)\right) \cdot d y$

$=\frac{y^{2}}{2}-\left.\left(\frac{k}{2}+\frac{2}{k}\right) \cdot \frac{y^{3}}{3}\right| _0 ^{\frac{2 k}{k^{2}+4}}$

$=\left(\frac{2 k}{k^{2}+4}\right)^{2}\left[\frac{1}{2}-\frac{k^{2}+4}{2 k} \times \frac{1}{3} \times \frac{2 k}{k^{2}+4}\right]$

$=\frac{1}{6} \times 4 \times\left(\frac{1}{k+\frac{4}{k}}\right)^{2}$

$A \cdot M \geq G \cdot M \frac{\left(k+\frac{4}{k}\right)}{2} \geq 2$

$k+\frac{4}{k} \geq 4$

Area is maximum when $k=\frac{4}{k}$

$k=2,-2$