Area Under Curves Question 11

Question 11 - 2024 (31 Jan Shift 1)

The area of the region

${(x, y): y^{2} \leq 4 x, x<4, \frac{x y(x-1)(x-2)}{(x-3)(x-4)}>0, x \neq 3 }$ is

(1) $\frac{16}{3}$

(2) $\frac{64}{3}$

(3) $\frac{8}{3}$

(4) $\frac{32}{3}$

Show Answer

Answer (4)

Solution

$y^{2} \leq 4 x, x<4$

$\frac{x y(x-1)(x-2)}{(x-3)(x-4)}>0$

Case-I : $y>0$

$\frac{x(x-1)(x-2)}{(x-3)(x-4)}>0$

$x \in(0,1) \cup(2,3)$

Case -II:y $<0$

$\frac{x(x-1)(x-2)}{(x-3)(x-4)}<0, x \in(1,2) \cup(3,4)$

$ \begin{aligned} & \text { Area }=2 \int _0^{4} \sqrt{x} d x \\ & =2 \cdot \frac{2}{3}\left[x^{3 / 2}\right] _0^{4}=\frac{32}{3} \end{aligned} $