Units And Dimensions Question 6

Question 6 - 29 January - Shift 2

The equation of a circle is given by $x^{2}+y^{2}=a^{2}$, where $a$ is the radius. If the equation is modified to change the origin other than $(0,0)$, then find out the correct dimensions of $A$ and $B$ in a new equation: $(x-A t)^{2}+(y-\frac{t}{B})^{2}=a^{2}$.

The dimensions of $t$ is given as $[T^{-1}]$.

(1) $A=[L^{-1} T], B=[LT^{-1}]$

(2) $A=(LT], B=[L^{-1} T^{-1}]$

(3) $A=[L^{-1} T^{-1}], B=[LT^{-1}]$

(4) $A=[L^{-1} T^{-1}], B=[LT]$

Show Answer

Answer: (2)

Solution:

Formula: Principle of homogeneity of dimensions

$(x-A t)^{2}+(y-\frac{t}{B})^{2}=a^{2}$

$[At]=A \times \frac{1}{T}=L$

$\therefore[A]=T^{1} L^{1}$

$\frac{t}{B}$ is in meters

$\therefore \frac{1}{T[B]}=L$

$\therefore \quad[B]=T^{-1} L^{-1}$

$\therefore$ Correct Ans. (2)