Rotational Motion Question 6

Question 6 - 25 January - Shift 2

If a solid sphere of mass $5 kg$ and a disc of mass 4 $kg$ have the same radius. Then the ratio of moment of inertia of the disc about a tangent in its plane to the moment of inertia of the sphere about its tangent will be $\frac{x}{7}$. The value of $x$ is

Show Answer

Answer: (5)

Solution:

Formula: Moment of inertia, Perpendicular Axis Theorem

tangent will be $\frac{\lambda}{7}$. The value of $x$ is

$I_1=\frac{2}{5} m_1 R^{2}+m_1 R^{2}$

$I_1=m_1 R^{2}(\frac{7}{5})$

$I_1=7 R^{2}$

$m_2=4 kg$

Radius $=R$

Disc

$I_2=\frac{m_2 R^{2}}{4}+m_2 R^{2}$

$I_2=\frac{5}{4} m_2 R^{2}$

$I_2=5 R^{2}$

$I_2$