Three Dimensional Geometry Question 6

Question 6 - 24 January - Shift 2

If the shortest between the lines $\frac{x+\sqrt{6}}{2}=\frac{y-\sqrt{6}}{3}=\frac{z-\sqrt{6}}{4}$ and $\frac{x-\lambda}{3}=\frac{y-2 \sqrt{6}}{4}=\frac{z+2 \sqrt{6}}{5}$ is 6 , then the square of sum of all possible values of $\lambda$ is ________

Show Answer

Answer: 624

Solution:

Formula: Skew Lines

Shortest distance between the lines

$\frac{x+\sqrt{6}}{2}=\frac{y-\sqrt{6}}{3}=\frac{z-\sqrt{6}}{4}$

$\frac{x-\lambda}{3}=\frac{y-2 \sqrt{6}}{4}=\frac{2+2 \sqrt{6}}{5}$ is 6

Vector along line of shortest distance

$= \begin{vmatrix} i & j & k \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{vmatrix} , \Rightarrow-\hat{i}+2 \hat{j}-k$ (its magnitude is $\sqrt{6}$ )

Now $\frac{1}{\sqrt{6}} \begin{vmatrix} \sqrt{6}+\lambda & \sqrt{6} & -3 \sqrt{6} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{vmatrix} = \pm 6$

$\Rightarrow \lambda=-2 \sqrt{6}, 10 \sqrt{6}$

So, square of sum of these values is 624 .